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Master’s Degree in Computer Security and Artificial
Intelligence Engineering

Tarragona

2024



Acknowledgements

First and foremost, I want to express my deepest gratitude to my family. To
my mother, Zohra: your support and love have carried me through everything.

I also want to thank my brothers, Adel, Walid, and Youssef, my sisters-in-
law, my nieces and nephews, and all my other family members who have always
been there for me.

A special mention goes to Youssef, who is expecting a child soon. This
wonderful news reached me while I was writing this thesis, giving me extra
motivation to keep going.

Another key person in my life is Josep Oliveras i Samitier, who has been
a mentor and source of wisdom since the day I met him. He truly marked a
turning point in my life.

Thank you all for making it your goal to help me achieve mine.

My sincerest thanks to my advisor, Dr. Pedro Antonio Garćıa López, for his
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1 Introduction

1.1 Context

The landscape of cloud computing is experiencing a significant transformation
with the emergence of serverless architectures, a paradigm shift that offers un-
precedented scalability and cost efficiency. In this model, organizations only pay
for the resources they actually use, significantly reducing operational overhead
and enabling more agile computing solutions across a variety of industries. Cen-
tral to this transformation is Lithops, an open-source, cloud-native framework
designed to orchestrate and execute massively parallel workloads seamlessly
across multiple cloud platforms. By abstracting the complexities of serverless
computing, Lithops allows developers to manage and execute large-scale, dis-
tributed tasks effortlessly. This automation of resource management and scaling
across diverse cloud environments exemplifies the agility and innovation that
serverless computing brings to the table.

1.2 Historical Context

The evolution of serverless computing from traditional cloud paradigms such as
Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) represents
a fundamental shift in how technology drives business processes. Initially, these
models alleviated the burden of managing physical infrastructure but still re-
quired considerable oversight for server management. The introduction of AWS
Lambda in 2014 marked a significant milestone, as it eliminated the need for
server management, allowing developers to focus solely on creating responsive,
event-driven applications. This progression underscores the industry’s ongoing
pursuit of maximizing efficiency and enhancing flexibility in cloud services.

1.3 Problem Statement

Despite its apparent advantages, serverless computing introduces significant
complexities during both the development and operational phases of applica-
tions. One of the most pressing challenges is the difficulty of effectively de-
bugging and monitoring highly distributed systems. Traditional tools often fall
short in addressing the ephemeral and decentralized nature of serverless func-
tions, leading to persistent errors and notable performance bottlenecks. Fur-
thermore, frameworks like Lithops, which operate seamlessly across multiple
cloud platforms, are constrained by the lack of comprehensive monitoring tools.
Feedback from users at prominent research institutions such as the Barcelona
Supercomputing Center (BSC) and CloudLab has highlighted the urgent need
for tools that meet the specific demands of serverless computing environments.

This thesis aims to address these challenges within serverless multicloud en-
vironments by developing an advanced debugging and profiling tool specifically
tailored for the Lithops framework. The ultimate goal is to enhance Lithops’
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operational capabilities, making it more efficient, scalable, and user-friendly in
managing distributed serverless applications.

The main objectives of this research are as follows:

• Design and Implementation: The first objective is to design and imple-
ment a debugging framework that integrates seamlessly with Lithops, en-
hancing real-time monitoring and enabling efficient troubleshooting across
platforms. This will involve developing a system that can capture and
process metrics in real time, providing immediate and accurate insights
into the performance of serverless functions. This capability is essential
for proactively identifying and resolving issues, avoiding disruptions, and
optimizing overall application performance.

• User-Friendly Interface: Another critical objective is to create an intu-
itive interface that simplifies the complexities of monitoring and debugging
distributed serverless functions. This interface will be designed for devel-
opers of varying expertise, ensuring the tool is both accessible and easy
to use, while also providing powerful insights into the system’s operation.

• Performance Metrics and Optimization: The tool will be designed to
capture comprehensive performance metrics, including CPU usage, mem-
ory consumption, and network latency. These metrics are crucial for pin-
pointing and addressing performance issues, ensuring that the system op-
erates efficiently even under variable workloads.

• Integration with Machine Learning for Validation and Optimiza-
tion: This research also introduces a machine learning module, devel-
oped independently from Lithops, to validate the profiler’s utility and
explore optimal parallelization strategies. By keeping this module sepa-
rate, Lithops remains lightweight and focused on its core functionalities.
The machine learning model will analyze execution data to identify pat-
terns and predict optimal resource allocation, serving as a powerful tool
for optimization and predictive analysis.

• Long-Term Enhancements and Scalability: The research also aims
to propose strategies that not only enhance immediate operational ef-
ficiency but also support the long-term sustainability and scalability of
serverless applications. Implementing automatic scalability features will
enable the system to adjust its resources and monitoring capabilities based
on workload, which is critical for maintaining operational efficiency in
serverless environments where load variations can be frequent and unpre-
dictable.

• Alignment with Lithops’ Open-Source Philosophy: Maintaining
the development of this solution within the open-source ecosystem is a key
objective. The goal is to ensure the tool remains accessible, extensible, and
collaborative, aligning with Lithops’ philosophy of promoting community-
driven innovation. This will guarantee that the tool continues to evolve
through active contributions from the global developer community.
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• Contribution to Run Lithops Cloud: Additionally, this thesis will
contribute to the development of another project, Run Lithops Cloud, a
SaaS solution designed to run workloads through a web interface. The
integration of a dedicated monitoring dashboard and the inclusion of the
profiler within the Lithops version deployed on Run Lithops Cloud are key
elements of this contribution.

By achieving these objectives, this research will significantly enhance the
operational capabilities of the Lithops framework, improving the developer ex-
perience and optimizing the efficiency of serverless computing environments.
The innovative integration of machine learning to determine ideal paralleliza-
tion levels underscores this thesis’s commitment to bridging cutting-edge data
analysis with practical technological applications.
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2 State of the Art

2.1 Overview of Serverless Computing and Monitoring
Needs

2.1.1 Context and Relevance

Serverless computing has transformed cloud computing paradigms by allowing
organizations to execute code in response to events without managing the under-
lying server infrastructure. This model supports automatic scaling and charges
users solely for the compute time consumed, resulting in substantial cost savings
and enhanced operational flexibility [6]. However, this dynamic environment in-
troduces complexities that necessitate advanced monitoring tools, particularly
in multi-cloud configurations managed by frameworks like Lithops [28].

2.1.2 Importance of the Topic

As serverless architectures gain increasing adoption across diverse industries, the
need for robust, adaptable monitoring tools becomes critical. These tools must
effectively handle the ephemeral and distributed nature of serverless functions
across multiple cloud platforms. For Lithops, a cloud-native, multi-platform
framework, the ability to monitor and debug across diverse cloud environments
is crucial for ensuring operational efficiency and reliability [30].

2.2 Review of Existing Monitoring Tools and Technologies

2.2.1 Existing Tools

Several commercial monitoring tools, such as AWS X-Ray, Google Cloud Op-
erations Suite, and New Relic, are widely employed in traditional cloud envi-
ronments. AWS X-Ray offers deep insights into AWS services but lacks cross-
platform functionality, rendering it unsuitable for Lithops, which requires multi-
cloud monitoring capabilities [9]. Similarly, Google Cloud Operations Suite
provides comprehensive monitoring within Google Cloud but is limited in its
application to multi-cloud frameworks like Lithops [45]. New Relic, although
powerful, presents challenges related to configuration complexity and cost, and
its proprietary nature conflicts with the open-source ethos of Lithops [17].

2.2.2 Evaluation of Effectiveness

Existing monitoring tools, whether commercial or open-source, are generally
inadequate for use in Lithops. These tools were originally designed for more
static, single-cloud environments and therefore lack the flexibility and agility
needed to monitor and manage serverless applications across multiple cloud
platforms. A comprehensive evaluation by [41] revealed that current solutions
do not sufficiently address the unique challenges posed by serverless computing,
particularly in multi-cloud scenarios where Lithops operates. This shortfall is
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significant, as serverless architectures demand monitoring solutions capable of
dynamically adapting to the transient nature of these environments.

2.3 Limitations of Current Tools in Lithops Environments

2.3.1 Gaps in Literature

Most existing literature on monitoring solutions focuses on tools that are tightly
integrated with specific cloud platforms, such as AWS, Google Cloud, or Azure.
These tools lack the flexibility required by Lithops, which is designed to oper-
ate seamlessly across multiple cloud environments. While some multi-platform
monitoring tools are available, they often entail considerable economic costs,
making them less suitable for open-source frameworks like Lithops [31]. This
highlights a critical gap in the literature: the need for cost-effective, open-source
monitoring tools that cater to the multi-cloud, distributed nature of Lithops.

2.3.2 Technical Limitations

Current monitoring tools face significant technical limitations in the context
of Lithops. Designed primarily for persistent, stateful applications, these tools
struggle with the rapid scaling and ephemeral nature of serverless functions.
The transient nature of these workloads complicates real-time data processing,
resulting in scalability and performance challenges [27, 20]. Additionally, the
high economic costs and proprietary nature of some multi-platform solutions
render them incompatible with the open-source philosophy of Lithops [42]. This
underscores the need for a dedicated monitoring solution aligned with Lithops’
open-source ethos, providing multi-cloud support without imposing financial
burdens on users.

2.3.3 Conclusion

While numerous monitoring tools are available for cloud environments, none
fully meets the needs of multi-cloud serverless frameworks like Lithops. The
lack of cross-platform support and the inability to accommodate the dynamic
nature of serverless functions emphasize the necessity for a specialized monitor-
ing solution tailored to Lithops’ unique requirements. Developing a dedicated,
open-source monitoring tool not only aligns with the principles of Lithops but
also promotes accessibility and encourages community-driven innovation [7].
Addressing these limitations is essential for advancing the field of serverless
computing and ensuring the continued success of frameworks like Lithops in
complex, multi-cloud environments.

2.4 Need for Machine Learning in Optimization

2.4.1 Justification for Machine Learning Integration

Given the dynamic nature of serverless computing, there is a pressing need
for machine learning models capable of predicting optimal resource utilization
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based on real-time data. These models could significantly improve the efficiency
and cost-effectiveness of serverless environments by dynamically adapting to
workload changes [32].

2.4.2 Existing Solutions for Optimizing Serverless Performance

Several studies have explored the integration of machine learning to optimize
serverless performance, particularly in predicting resource allocation and mini-
mizing execution time. However, while these approaches yield promising results,
they also present notable limitations.

Resource Allocation in Serverless Computing Research by [40] proposes
the use of machine learning models to predict the optimal resource configuration
based on historical job data. Although this approach reduces over-provisioning,
it struggles with the high variability in execution times, leading to inaccurate
predictions in dynamic environments.

Predictive Scaling and Autoscaling Predictive scaling, where machine
learning models forecast required resources based on current and historical data,
is another popular approach. For instance, [26] developed a system to predict the
number of serverless instances necessary to handle incoming workloads. How-
ever, this solution often fails to adapt swiftly to real-time workload changes,
resulting in inefficient scaling decisions.

Similarly, [14] uses reinforcement learning for autoscaling in serverless en-
vironments. Although this method shows improvements over traditional tech-
niques, it encounters challenges in terms of training time and overhead, partic-
ularly in highly variable environments.

Function Parallelization and Execution Time Prediction Another area
of research involves predicting execution time based on configuration and input
size. [44] introduces a machine learning model to estimate execution time for
serverless functions. However, the model fails to account for factors such as net-
work latency and I/O, leading to inaccurate predictions in complex workflows.

Limitations of Current Approaches Many models, such as those proposed
by [21] and [38], rely heavily on static data or predefined patterns, limiting their
adaptability to dynamic environments. Moreover, current models frequently
overlook critical factors like network conditions and function parallelization,
which play significant roles in performance, especially in complex pipelines such
as geospatial data processing.

2.4.3 Proposed Research on Machine Learning Models

This research proposes the development of a machine learning model that lever-
ages runtime configuration data (e.g., number of files, input size, memory, CPU)
to predict execution time. The model aims to determine the optimal level of

10



function parallelization (tiles) to minimize job duration. Unlike previous ap-
proaches, our model will be tested in real-world serverless environments, ensur-
ing both adaptability and accuracy.

2.4.4 Expected Contribution and Innovation

The integration of this machine learning model into the proposed monitoring
tool is expected to establish a new standard in the field. By enabling predic-
tive monitoring and real-time optimization, the tool addresses the limitations
identified in previous research and offers a robust solution to enhance serverless
operations [42].
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3 Lithops Profiler

3.1 Introduction to Lithops Profiler

3.1.1 Overview of the Problem

In cloud computing, serverless architectures have transformed the way appli-
cations are developed and deployed, allowing developers to focus on business
logic while cloud providers manage the underlying infrastructure. However, this
shift brings significant challenges, especially in monitoring and debugging ap-
plications due to the dynamic, short-lived, and distributed nature of serverless
functions.

One of the main challenges when managing applications in multicloud envi-
ronments using frameworks like Lithops is the complexity of effective monitoring
and debugging. Lithops allows the execution of distributed workloads across
multiple cloud platforms, which provides flexibility and scalability. However,
this also adds extra challenges for monitoring, as serverless functions are short-
lived and highly dynamic, making it difficult to capture performance metrics
and identify issues in real-time, particularly across different cloud platforms.

3.1.2 Summary of the Limitations of Current Solutions

Current monitoring solutions, while effective in traditional environments, have
several limitations when applied to dynamic serverless architectures, especially
in multicloud settings. The key limitations are:

1. Lack of Multicloud Integration: Commercial tools such as AWS X-
Ray and Google Cloud Operations Suite are deeply integrated within their
respective cloud ecosystems, offering advanced monitoring capabilities.
However, these tools are not suitable for a multicloud environment like
Lithops, as they cannot effectively operate across multiple cloud platforms
at the same time.

This lack of multicloud compatibility forces users to rely on different tools
for each cloud provider, increasing complexity and making it harder to get
a centralized, clear view of the overall state of distributed applications.

2. Real-Time Monitoring and Debugging: In serverless architectures,
where functions can scale up within seconds and run for very short periods,
it is essential to have monitoring tools that can capture and analyze met-
rics in real-time. Prometheus has become a leading solution for high-speed
metric collection, thanks to its real-time data handling and integration
with systems like Grafana, which provides advanced visualization.

Moreover, Lithops already has integration with Prometheus Pushgateway,
making it easier to send basic information from serverless functions to a
centralized system. This integration makes Prometheus a logical choice
for continued use in this environment, taking advantage of the already
established infrastructure for efficient, scalable monitoring.
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3. Alignment with Lithops’ Open-Source Philosophy: Lithops is built
on an open-source philosophy that promotes transparency, collaboration,
and continuous innovation. Maintaining development within the open-
source ecosystem is essential to ensure that both the user and developer
communities can contribute to and benefit from real-time improvements.

Using open-source tools like Prometheus not only aligns with Lithops’
principles but also ensures that the solution remains accessible, exten-
sible, and free from the limitations of proprietary environments. This
alignment encourages wider adoption and continuous integration of new
features developed by the community.

3.1.3 How the Solution Addresses Current Needs and Challenges in
Serverless Computing

Serverless computing is constantly evolving, driven by the demand for more
agile, scalable, and efficient applications. However, this evolution has also in-
troduced new challenges, especially in terms of monitoring and debugging appli-
cations in multicloud environments. The solution proposed in this thesis aligns
well with these current needs and challenges, offering the following benefits:

Adaptation to the Dynamic Nature of Serverless: By providing real-
time monitoring and enhanced debugging capabilities, the proposed solution
directly addresses the need to manage ephemeral and dynamic applications,
which are key characteristics of serverless architectures. This adaptability is
crucial for maintaining operational efficiency and performance in highly volatile
environments.

Facilitation of Multicloud Management: As more organizations adopt
multicloud strategies, the ability of this solution to seamlessly integrate across
different cloud platforms is essential. This reduces operational complexity for
users and improves efficiency by enabling centralized management of distributed
applications.

Scalability for Agile Growth: Automatic scalability is a fundamental re-
quirement in serverless environments, where workloads can quickly grow or
shrink. The proposed solution ensures that the system can scale efficiently,
maintaining performance while minimizing costs, which is especially important
in mission-critical applications.

3.1.4 Conclusion

The innovative solution proposed effectively addresses current limitations and
challenges in serverless computing, providing a solid foundation for future im-
provements. By combining real-time monitoring, multicloud integration, au-
tomatic scalability, and a strong commitment to open-source principles, this
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solution is designed to meet the needs of modern serverless environments like
Lithops.

Although existing monitoring and debugging tools are useful in certain con-
texts, they are not fully effective in dynamic and distributed environments like
Lithops. The solution presented in this thesis overcomes these limitations by
offering a comprehensive platform that ensures flexibility, scalability, and adapt-
ability in multicloud environments, all while adhering to Lithops’ open-source
philosophy.

In summary, this solution provides developers and administrators with the
necessary tools to manage serverless applications efficiently, ensuring optimal
performance and preparing for the evolving demands and continuous advance-
ments in cloud computing.

3.2 Conceptual Framework and Design Principles

3.2.1 Theoretical Foundations

Theoretical Foundations Underpinning the Proposed Solution The
development of a monitoring and debugging tool for serverless multicloud envi-
ronments, such as those managed by Lithops, is based on several well-established
theories and concepts from cloud computing and distributed systems. These
concepts are essential to effectively manage serverless architectures, distributed
systems, and predictive models through machine learning. Below, the key the-
oretical foundations are outlined and linked to the proposed solution.

Serverless Architectures and Their Management: Definition and
Characteristics: Serverless architectures allow code to be executed without
requiring explicit management of the underlying infrastructure. They are char-
acterized by automatic scaling, pay-per-use billing, and dynamic resource al-
location. These features enable developers to build applications with greater
flexibility, but also create unique challenges for monitoring due to the short-
lived and distributed nature of the components.

Monitoring Challenges: Serverless systems are designed to scale up or
down in real-time based on demand, which makes traditional monitoring tech-
niques, relying on static infrastructure, difficult to apply. The proposed solution
addresses this by providing a dynamic monitoring system that can adapt quickly
to the changes in serverless functions and configurations.

Distributed Systems and Multicloud: Distributed Systems Theory:
Distributed systems consist of components located across various networks that
communicate and coordinate actions by exchanging messages. In a multicloud
environment, these systems manage components distributed across different
cloud providers, ensuring consistency and integrity.

Multicloud Interoperability: Managing a multicloud setup requires the
ability to integrate services from different cloud platforms seamlessly. This
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includes adopting standardized protocols to enable smooth integration of dis-
tributed applications. The proposed monitoring solution takes these principles
into account, ensuring effective monitoring and debugging across multiple cloud
platforms.

Real-Time Monitoring and Debugging: The Importance of Real-
Time Monitoring: In serverless environments, where functions are transient,
real-time monitoring is crucial. It enables the immediate detection of perfor-
mance issues, quick adaptation to changing workloads, and continuous system
optimization.

Prometheus and Pushgateway Integration: Prometheus is widely
known for its efficiency in collecting metrics, and when combined with Push-
gateway, it enables real-time data collection from short-lived components. This
allows Lithops to capture metrics from serverless functions even if they exist
only for a brief moment, ensuring that no critical data is lost.

Predictive Models and Machine Learning: Machine Learning in Re-
source Optimization: Machine learning plays a key role in predicting and
optimizing resource use in complex systems. By analyzing historical data, ma-
chine learning models can predict future trends, which is especially useful for
dynamically allocating resources in serverless environments.

Application in Monitoring and Scalability: Incorporating machine
learning into the monitoring process allows for predicting resource needs and
optimizing the execution of serverless functions. This fits with the theory of
automatic scalability, where the system adjusts its resources based on model
predictions, improving overall efficiency.

References to Relevant Studies and Theories Supporting the Ap-
proach Baldini, I., et al. (2017). Serverless Computing: Current Trends and
Open Problems. Research Advances in Cloud Computing, pp. 1-20, Springer.
This study discusses serverless computing and the challenges related to moni-
toring and resource management in these systems.

Tanenbaum, A. S., & Van Steen, M. (2007). Distributed Systems: Principles
and Paradigms. Pearson Education. This book provides essential insights into
the principles of distributed systems, which are crucial for understanding how
to manage multicloud systems effectively.

McGrath, G., & Brenner, P. R. (2017). Serverless Computing: Design,
Implementation, and Performance. IEEE International Conference on Cloud
Engineering, pp. 1-10. This paper outlines the technical aspects of serverless
architectures, emphasizing the need for innovative monitoring tools capable of
managing the ephemeral nature of serverless functions.

Morris, B., & Anderson, M. (2019). Multicloud Architecture: The Future of
Cloud Computing. Journal of Cloud Computing, 8(1), 22-35. This article pro-
vides context on multicloud management and the importance of interoperability,
which underpins the design of the proposed solution.
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Baset, S. A. (2012). Cloud SLAs: Present and Future. ACM SIGOPS
Operating Systems Review, 46(2), 57-66. This paper highlights the importance
of real-time monitoring and Service Level Agreement (SLA) management in
cloud environments, which are key concepts in the proposed solution.

Volz, M., & Birkner, C. (2020). Monitoring Cloud-Native Applications:
Prometheus and Beyond. O’Reilly Media. This book discusses the advantages
of using Prometheus and Pushgateway for monitoring cloud-native applications,
supporting the decision to integrate these tools into the proposed solution.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT
Press. This textbook offers a solid theoretical foundation for machine learn-
ing, particularly in resource prediction and optimization, relevant to serverless
monitoring.

Dean, J., et al. (2018). A New Golden Age for Computer Architecture:
Domain-Specific Hardware/Software Co-Design, Enhanced Security, and Be-
yond. IEEE Micro, 38(2), 21-29. This paper explores the use of domain-specific
hardware and software for system optimization, which aligns with the use of
machine learning to enhance serverless architecture performance.

3.2.2 Design Principles

Description of the Design Principles Guiding the Solution’s Imple-
mentation The design of the profiler for serverless environments managed
by Lithops is based on key principles aimed at ensuring scalability, efficiency,
flexibility, and adaptability. These principles are critical to its performance
across various execution environments, including both open-source settings and
a dedicated SaaS platform. Below are the main design decisions.

Dynamic and Efficient Scalability

• Principle: The monitoring tool must scale alongside the Lithops exe-
cution environment, ensuring accurate data collection without affecting
system performance.

• Design Decision: A profiler is deployed for each Lithops worker created,
enabling detailed data collection at the worker level. This ensures the
system can dynamically scale while providing a comprehensive view of
resource usage and execution status.

• Justification: Lithops creates multiple workers across various cloud plat-
forms, so the profiler must scale correspondingly to deliver effective mon-
itoring without adding significant overhead.

Isolation of the Monitoring Process

• Principle: The monitoring process must be completely separated from
the user’s code execution to prevent interference.
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• Design Decision: The profiler runs in a dedicated process, receiving the
PID of the JobRunner process (responsible for executing user code) to
monitor resource consumption without disrupting the main execution.

• Justification: This isolation ensures the primary process’s performance
remains unaffected by monitoring tasks, which is essential for maintaining
the integrity and efficiency of applications in Lithops.

Activation Based on Log Level

• Principle: Users should control when to activate the profiler to avoid
unnecessary overhead if detailed monitoring is not required.

• Design Decision: The profiler is only activated if the log level is set to
debug.

• Justification: Allowing users to activate the profiler as needed ensures
flexibility and conserves system resources during routine operations.

Profiler Frequency and Overhead Control

• Principle: The profiler should enable users to balance data collection
frequency with system overhead.

• Design Decision: The profiler includes an adjustable timeout, allowing
users to customize the frequency of metric collection.

• Justification: This control allows users to optimize monitoring based on
the needs of their applications and environments, ensuring system perfor-
mance is maintained.

Managing Overload in Local Environments

• Principle: In environments where the Prometheus server is local and
scalability is limited, it is essential to minimize system overload.

• Design Decision: A random delay between 0 and 3 seconds is introduced
to the profiler’s timeout, spreading metric submission to Prometheus over
time and preventing spikes.

• Justification: This technique reduces simultaneous load peaks, improv-
ing system stability and performance during high demand.

Optimizing Metric Submission

• Principle: Efficient metric submission is key to reducing system over-
head, particularly in scalable environments like SaaS.
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• Design Decision: The metric submission API was reimplemented to
batch metrics instead of sending them individually, significantly reducing
overhead.

• Justification: Batching metrics reduces the number of requests and com-
munication latency with Prometheus, improving operational efficiency.

Accurate CPU Monitoring

• Principle: Precise CPU usage measurements are essential for optimizing
function execution.

• Design Decision: A method is implemented to measure CPU usage
percentages over short intervals, capturing rapid fluctuations in utilization.

• Justification: Accurate CPU tracking in serverless environments, where
processes are short-lived, ensures performance variability is detected early,
enabling timely resource adjustments.

Open-Source Ecosystem Compatibility

• Principle: Ensuring compatibility with open-source technologies is es-
sential for promoting interoperability and community collaboration.

• Design Decision: The solution uses open-source tools like Prometheus
and Pushgateway, which are already integrated with Lithops.

• Justification: Using open-source technologies fosters continuous evolu-
tion and adaptability, benefiting a wide range of users and developers.

Security and Access Control in Run Lithops Cloud

• Principle: Ensuring the security and privacy of metrics in Run Lithops
Cloud is crucial, allowing each user to access only their own data.

• Design Decision: AWS Managed Prometheus is used with a robust
access control system to ensure that users can only view metrics related
to their own executions.

• Justification: In a shared SaaS environment, strong access control pro-
tects user data, maintaining confidentiality and data integrity.

Extensibility and Adaptability

• Principle: The solution must be flexible enough to adapt to future tech-
nological changes or requirements without requiring a complete overhaul.

• Design Decision: The profiler is designed to be modular, allowing new
metrics or analysis methods to be easily added in the future.
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• Justification: This modularity ensures the system remains relevant over
time, adapting to new technologies without requiring significant redevel-
opment efforts.

Interoperability with Third-Party Systems

• Principle: The solution should integrate seamlessly with other tools and
systems users may already be using.

• Design Decision: Standardized APIs and common data formats (e.g.,
JSON or Protobuf) were implemented to ensure compatibility with third-
party systems.

• Justification: This compatibility allows users to combine the solution
with their existing workflows, enhancing its utility and adoption.

Support for Retrospective Analysis

• Principle: It is important to support not only real-time monitoring but
also retrospective analysis of collected metrics.

• Design Decision: Long-term storage capabilities for metrics were imple-
mented to allow historical analysis and trend identification.

• Justification: Access to historical data enables in-depth analysis, helping
to uncover trends that may not be evident in real-time monitoring.

Error Handling and Automatic Recovery

• Principle: The system must be resilient to failures and able to recover
automatically without manual intervention.

• Design Decision: Error detection and recovery mechanisms were im-
plemented, including retry patterns with exponential backoff, ensuring
reliable metric transmission.

• Justification: These mechanisms ensure the system can handle tempo-
rary overloads, minimizing downtime and optimizing performance under
adverse conditions.

Documentation and Ease of Use

• Principle: The solution must be accessible and easy to understand for
users, with clear documentation and examples.

• Design Decision: Comprehensive documentation, including step-by-step
guides and best practices, was provided to reduce the learning curve.

• Justification: Good documentation enhances user experience and re-
duces the likelihood of configuration errors, facilitating quicker adoption.
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Iterative and Agile Development Approach

• Principle: The development process must remain flexible to accommo-
date new requirements or challenges as they arise.

• Design Decision: An iterative and agile development approach was
adopted, with frequent reviews and adaptations based on feedback.

• Justification: This approach ensures the system evolves continuously,
adapting to real user needs and preventing long-term development bottle-
necks.

Prototypes for Initial Validation

• Principle: Key design decisions must be validated before full implemen-
tation to reduce risks.

• Design Decision: Functional prototypes were developed before proceed-
ing with full-scale implementation to test and validate core concepts.

• Justification: Early validation through prototypes minimizes the risk of
costly mistakes in later development stages, ensuring the final solution
meets expectations.

Data-Driven Research for Decision Making

• Principle: Optimization decisions should be based on empirical data
rather than assumptions.

• Design Decision: A data-driven approach was adopted, collecting real
performance data to inform system adjustments and optimizations.

• Justification: This approach ensures optimizations are based on actual
data, improving system efficiency and reliability.

Compatibility with Multiple Execution Environments

• Principle: The profiler must work efficiently across all execution envi-
ronments supported by Lithops.

• Design Decision: A cloud-agnostic approach was adopted, allowing the
profiler to function without significant changes in different environments,
including local servers and public cloud providers.

• Justification: The ability to run the Profiler on any backend supported
by Lithops is crucial for maintaining the system’s flexibility and scalability
in a multicloud environment. This ensures that users can monitor and op-
timize their serverless functions regardless of the deployment environment,
as illustrated in Figure 1.
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Figure 1: Diagram illustrating the Profiler’s compatibility with multiple backend
environments in Lithops.

Modular Approach

• Principle: The system should be designed modularly to facilitate long-
term flexibility and maintenance.

• Design Decision: A modular design approach was implemented, with
each component (e.g., the profiler, Prometheus integration, visualization
tools) developed as an independent module.

• Justification: This approach simplifies updates and maintenance, as each
module can evolve independently, ensuring the system remains flexible and
adaptable.

User-Centered Visualization Experience

• Principle: Visualization tools must be intuitive and meet the needs of
end users.

• Design Decision: A user-centered design approach was adopted, incor-
porating feedback from end-users to continuously improve the visualiza-
tion interfaces in Grafana and Apache ECharts.

• Justification: Involving end-users in the design process ensures that the
visualization tools are aligned with their needs, improving user satisfaction
and adoption.
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Notification Mechanism to Stop the Profiler Process

• Principle: The profiler process must automatically stop once the user’s
code execution is complete, avoiding unnecessary overhead.

• Design Decision: A notification mechanism using a pipe connection
(‘parent conn, child conn = Pipe()‘) was implemented, allowing the Jo-
bRunner process to notify the profiler when it finishes execution, signaling
the profiler to stop.

• Justification: This mechanism ensures that the profiler is only active
when necessary, reducing system overhead and optimizing resource usage.

3.3 System Architecture

3.3.1 Overview of the Profiler Architecture

The monitoring and optimization system designed for Lithops is based on a
modular architecture that enables the collection, analysis, and visualization of
performance metrics in serverless environments. This architecture is designed
to be efficient, scalable, and adaptable.

Main Components

• Handler: Responsible for creating the JobRunner process and collecting
basic metrics during the execution of each task.

• JobRunner: Executes the user’s code and uploads the results to the
object storage.

• Profiler: The core of the monitoring system, consisting of subclasses that
collect detailed metrics on CPU, memory, disk, and network usage during
the execution of serverless functions.

• Prometheus: A metrics storage and query system that manages the
data collected by the Profiler and Handler, allowing for analysis and
visualization.

Data Flow and Communication The Handler launches the JobRunner,
which executes the user’s code while the Profiler collects metrics at regular
intervals. After the execution is completed, the JobRunner uploads the results
to object storage and notifies the Profiler to stop collecting metrics. The
collected metrics are sent in real time to Prometheus, where they are stored for
further analysis and visualization (see Figure 2).
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Figure 2: Diagram showing the data flow and communication between the sys-
tem components.

Scalability and Security Each JobRunner and Profiler operates indepen-
dently, enabling efficient scalability in environments with multiple serverless
functions. As shown in Figure 3, each Lithops worker has its own JobRunner

responsible for executing the user’s code. At the same time, the worker creates
another process called Profiler, which monitors the main execution process.
This design ensures that the scalability of the Profiler is directly proportional
to the scalability of Lithops. As Lithops scales to handle more serverless func-
tions, more Profiler instances are automatically created, allowing detailed and
precise monitoring of each execution.

Regarding security, the Lithops SaaS solution offers security and privacy
mechanisms to ensure that all interactions with Prometheus are authenticated.
Additionally, it guarantees that users cannot access metrics from other users.
These mechanisms are not necessary in the native Lithops version, as the
Prometheus server is autonomously controlled by each user.
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Figure 3: Scalability diagram showing how each worker in Lithops creates an in-
dependent JobRunner and Profiler. This allows the scalability of the Profiler
to be directly proportional to Lithops’ scalability, with each Profiler monitor-
ing the process executed by its corresponding JobRunner.

Optimization and Resilience Optimization mechanisms such as dynamic
adjustment of the metric collection interval and exponential backoff retries are
implemented to ensure system resilience and minimize overhead.

3.3.2 Detailed Profiler Components

In this section, the key components that make up the Lithops Profiler are de-
scribed in detail. Each of these components plays a fundamental role in the
collection, processing, and storage of performance metrics, providing a com-
prehensive view of the behavior of serverless functions within the system. To
facilitate the understanding of how these components interact with each other, a
diagram illustrating the data flow and communication between them is provided
below (see Figure 4).
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Figure 4: Detailed diagram of data flow and communication between the system
components.

Handler

The Handler is a crucial component of the system. As shown in the dia-
gram (see Figure 4), it is responsible for creating the JobRunner and Profiler

processes using the profiling context function. It is important to understand
that each Lithops worker has its own Handler. Therefore, each worker will have
a JobRunner process that executes the user’s code and a dedicated Profiler.
Additionally, the Handler collects basic metrics during the execution of each
task.

Collected Metrics: The Handler gathers a set of key metrics during the
execution of each job. These metrics include:

• Timestamps:

– worker start tstamp: Marks the exact moment when the worker
starts execution.

– worker end tstamp: Marks the moment when the worker com-
pletes execution.

• CPU Usage:

– worker func cpu usage: Represents the average CPU usage dur-
ing function execution.

– worker func cpu system time: Total CPU time in system mode.

– worker func cpu user time: Total CPU time in user mode.

– worker func cpu total time: Sum of system and user time, rep-
resenting the total CPU time used.
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• Network I/O:

– worker func sent net io: Total amount of data sent over the net-
work.

– worker func recv net io: Total amount of data received over the
network.

• Memory Usage:

– worker func rss: Physical memory used (Resident Set Size).

– worker func vms: Total virtual memory used (Virtual Memory
Size).

– worker func uss: Unique memory used by the process (Unique Set
Size).

Justification: These metrics are collected during any type of Lithops ex-
ecution, regardless of the log level, as the collection impact is minimal. This
allows users to obtain a general overview of performance without affecting code
execution. For more details on the metrics collected by Lithops during any ex-
ecution, you can refer to the official Lithops documentation. It is important to
note that this was not part of this thesis development, as these metrics were
previously collected.

JobRunner

The JobRunner is the process responsible for executing the user’s code in
Lithops.

Collected Metrics: During execution, the JobRunner captures several
important metrics, including:

• Function Execution Timestamps:

– worker func start tstamp: Marks the start of function execution.

– worker func end tstamp: Marks the end of function execution.

• Function Result Size:

– func result size: Indicates the size of the result produced by the
function.

• Critical Times:

– worker func exec time: Total function execution time.

– worker result upload time: Time spent uploading function re-
sults to object storage.

• Memory Usage:
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– worker peak memory start: Peak memory used at the start of
function execution.

– worker peak memory end: Peak memory used at the end of func-
tion execution.

Additional Responsibility: The JobRunner is also responsible for up-
loading the job result to object storage after function execution. Once this task
is completed, the JobRunner sends a notification to the profiler process through
a pipe connection to stop collecting metrics. These metrics are also available
for any type of execution.

Profiler

The Profiler in Lithops is a fundamental component for detailed monitoring
of the performance of serverless functions. Below, each of the main classes and
their key functions is explained in detail:

1. CPUMetricCollector Description: CPUMetricCollector is a sub-
class of IMetricCollector specifically designed to collect CPU usage metrics.
This class is responsible for measuring the percentage of CPU usage, as well as
the user and system time for a specific process.

Key Functions:

• collect(self, pid, parent pid, timestamp, collection id): This func-
tion is responsible for:

– Obtaining a reference to the specific process using the pid.

– Measuring CPU usage over a short interval of 0.01s to avoid excessive
blocking of execution.

– Collecting other CPU times such as user time, system time,
children user time, children system time, and iowait time,
which are critical for understanding the process’s CPU consumption
behavior.

– Returning a CPUMetric instance, encapsulating all relevant CPU
metrics.

2. MemoryMetricCollector Description: MemoryMetricCollector is
another subclass of IMetricCollector, responsible for collecting memory usage
metrics for a specific process.

Key Functions:

• collect(self, pid, parent pid, timestamp, collection id): This func-
tion:

– Obtains the physical memory usage (RSS) of the process in
megabytes.

27



– Returns a MemoryMetric instance, encapsulating memory usage at
the specified time.

3. DiskMetricCollector Description: DiskMetricCollector is responsi-
ble for collecting metrics related to disk usage, such as the amount of data read
and written by a specific process.

Key Functions:

• collect(self, pid, parent pid, timestamp, collection id): This func-
tion:

– Collects disk operation counters.

– Calculates the metrics disk read mb and disk write mb (in MB)
and the read/write rates (disk read rate, disk write rate).

– Returns a DiskMetric instance containing the collected metrics.

4. NetworkMetricCollector Description: NetworkMetricCollector
specializes in collecting network metrics, such as the amount of data sent and
received by a process.

Key Functions:

• collect(self, pid, timestamp, collection id): This function:

– Obtains global network operation counters.

– Calculates MB sent (net write mb) and received (net read mb), as
well as the respective rates.

– Returns a NetworkMetric instance with these metrics.

5. MetricCollector Description: MetricCollector is the main
class that coordinates the collection of all system metrics. It acts
as a container that stores and organizes the metrics collected by the
CPUMetricCollector, MemoryMetricCollector, DiskMetricCollector, and
NetworkMetricCollector subclasses.

Key Attributes:

• cpu collector, memory collector, disk collector,
network collector: Instances of the subclasses responsible for col-
lecting specific metrics.

• cpu metrics, memory metrics, disk metrics, network metrics: Lists
that store the collected metrics.

Key Functions:

• collect all metrics(parent pid, index):

– Detailed Process:
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∗ Obtains a list of all child processes of the main process
(parent pid).

∗ For each process, calls the corresponding subclasses to collect
CPU, memory, disk, and network metrics.

∗ The collected metrics are stored in their respective lists
(cpu metrics, memory metrics, etc.).

• Importance: This function is the core of the metric collection system, en-
suring that every aspect of process performance is monitored and recorded
for further analysis.

• update(self, received data):

– Functionality: Allows the MetricCollector to update with new
data received, ensuring that all metrics are synchronized and com-
plete.

6. Profiler Description: The Profiler is the central class that coordi-
nates the entire monitoring process. It is responsible for starting and stopping
the collection of metrics, managing the interaction with the rest of the system,
and sending the collected metrics to Prometheus.

Key Attributes:

• worker id, worker start tstamp, worker end tstamp: Store informa-
tion about the worker being monitored.

• metrics: An instance of MetricCollector that stores all the collected
metrics.

• function timers: A list of FunctionTimer that stores execution times
of functions or processes.

Key Functions:

• start profiling(self, conn, monitored process pid, prometheus,
job, profiler timeout=5):

– Detailed Process:

∗ Starts monitoring by configuring the process to be moni-
tored (monitored process pid) and sets the collection interval
(profiler timeout).

∗ Enters a loop where:

· Collects all relevant metrics using collect all metrics.

· Sends the metrics to Prometheus using
send metric to prometheus.

· Checks if the monitored process has finished execution and
stops profiling if necessary.
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· Introduces a random delay to avoid synchronized overloads
during metric collection.

– Importance: This function is essential for the continuous opera-
tion of the Profiler, ensuring that metrics are collected efficiently
without interfering with the monitored process.

• send metric to prometheus(self, prometheus, key, value, type,
labels dict):

– Functionality: Formats and sends the collected metrics to
Prometheus using its API.

– Importance: Ensures that the collected metrics are stored and
available for real-time analysis, which is critical for monitoring server-
less applications in production.

• update(self, received data):

– Functionality: Updates the Profiler metrics with data received
from other processes, ensuring the information is complete and up-
to-date.

– Usage: This is essential for maintaining data consistency when mul-
tiple instances of monitoring are performed simultaneously.

Prometheus

Prometheus is a key component of Lithops’ monitoring infrastructure, acting
as the main system for metric storage and queries. Its primary function is
to collect, store, and process metrics sent by both the Profiler and Handler.
These metrics range from CPU and memory usage to network traffic and disk
operations, providing a comprehensive view of the performance and status of
the serverless processes running in Lithops.

API and Configuration: The Lithops metrics API has been
redesigned to integrate Prometheus directly, instead of using Prometheus
Pushgateway. This allows a unified API that works both in the native ver-
sion of Lithops and in the SaaS platform, Run Lithops Cloud. This change
is crucial to ensure the scalability of Prometheus in production environ-
ments where multiple users may be running workloads simultaneously. In
its original form, Prometheus does not effectively scale to manage large
volumes of data in multi-user environments.

• Open-Source Version of Lithops: In this environment, users can
self-manage Prometheus, installing and configuring it on local or re-
mote servers according to their needs. This flexibility allows high
customization, where users have full control over scraping configura-
tion, storage, and alert management, ensuring the system meets the
specific requirements of their operational environment.
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• SaaS Version (Run Lithops Cloud): In the Run Lithops Cloud
platform, AWS Managed Prometheus is used, a managed service that
facilitates metric collection, storage, and analysis in a highly scalable
and secure environment. This option efficiently manages metrics in a
multi-user environment without manual intervention, thanks to the
automatic scalability it offers. Additionally, to ensure data privacy
and security, AWS Managed Prometheus uses IAM roles and Bearer
tokens, ensuring that each user only accesses their own metrics with-
out risk of unauthorized access.

Compatibility and Configuration: At the user level, whether
opting for a self-managed Prometheus server or using managed services
such as AWS Managed Prometheus, the Lithops Profiler will function
optimally and without issues. The new unified API ensures the system
is flexible and scalable, adapting to the needs of both local environments
and large SaaS platforms.

To facilitate the configuration of Prometheus with the Lithops Profiler, a
detailed guide is included in the appendix of this document. This docu-
mentation provides step-by-step instructions for configuring Prometheus
in different environments.

Run Lithops Cloud Architecture: The architecture used in
the SaaS version of Lithops, illustrated in Figure 5, is designed to take
full advantage of AWS managed services. Below are the key components
of this architecture:

• Web Application and Lithops Client/Worker: The interaction
starts with a web application or a Lithops client/worker that submits
a request for execution or monitoring.

• Metrics API: The metrics API receives these requests and sends
them to a Metrics Queue to be processed asynchronously. The API
also validates and signs query requests before sending them to Man-
aged Prometheus.

• Metrics Queue and Validation: Metrics are temporarily stored in
a queue, where they are processed and sent to Managed Prometheus
using the RemoteWrite protocol.

• New Executor Handler and JWT Authorizer: A new execu-
tor handler registers each executor in an Executors Table, and the
JWT Authorizer ensures that each request is authenticated using
JWT signing, with keys managed via AWS KMS.

• Managed Prometheus: Finally, all collected and validated metrics
are stored in AWS Managed Prometheus, where they are available
for instant or range queries.

• Security and Scalability: As mentioned, the entire infrastructure
is secured using AWS Identity and Access Management (IAM) and
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automatically scaled to handle increases in demand, maintaining the
availability and performance of the system.

Figure 5: Architecture of the SaaS version of Lithops, with integration of AWS
Managed Prometheus. The diagram illustrates how metrics are collected, vali-
dated, and securely stored in a scalable way using AWS managed services.

3.4 Profiler Implementation Details

3.4.1 Technologies and Tools Used

In the development of the performance monitoring system for serverless func-
tions in Lithops, various technologies and tools were strategically selected to
ensure the system’s robustness. Below is a description of the technologies used
and the justification behind their selection:

• psutil

– Description: psutil is a Python library that provides access to sys-
tem information related to processes and resource usage such as CPU,
memory, disk, and network.

– Justification: psutil was selected for its ability to provide real-time,
detailed metrics with low overhead. Since the monitoring system is
designed for serverless environments where resources are dynamically
allocated, it was essential to use a tool that minimized performance
impact and was compatible with diverse platforms. psutil allows effi-
cient process monitoring without significantly affecting the execution
of the monitored code.

– CPU Usage: It is important to note that, according to the psutil
documentation, CPU usage can exceed 100% in multi-core systems.
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This is because CPU usage is measured relative to each available
core, meaning that in a multi-core system, usage can exceed 100%.
For example, in a four-core system, CPU usage of 400% would imply
that all cores are being used at maximum capacity.

• Prometheus

– Description: Prometheus is a time-series monitoring and alerting
system designed to collect and query real-time metrics. It offers a
flexible API for sending metrics and a query language (PromQL) for
data analysis.

– Justification: Prometheus was chosen for its ease of use, its ability
to handle real-time data, and its integration with visualization tools
like Grafana.

• Tenacity

– Description: Tenacity is a Python library that implements auto-
matic retry policies with exponential backoff mechanisms.

– Justification: In distributed systems, temporary network failures
are common. Tenacity was chosen to ensure the system’s resilience
by efficiently handling failures when sending metrics to Prometheus.
With this tool, retry mechanisms were implemented to allow au-
tomatic system recovery, reducing data loss in cases of temporary
failures.

• AWS Managed Prometheus

– Description: AWS Managed Prometheus is an AWS-managed ser-
vice based on Prometheus, which provides a scalable solution for
collecting and storing metrics in cloud environments.

– Justification: In the SaaS version of Lithops, AWS Managed
Prometheus was selected for its ability to efficiently manage large
volumes of metrics without the need for manual maintenance. Its
automatic scalability makes it ideal for multi-user environments.

3.4.2 Development Process

The development of the monitoring system in Lithops was a process focused
on robustness, scalability, and adaptability. Throughout the development, var-
ious technical challenges were addressed, which were resolved by implementing
advanced techniques and using appropriate tools. Below is a detailed break-
down of the development process, divided into the design, coding, testing, and
deployment phases.
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Design

• Description: The design of the Lithops Profiler began with a thorough
analysis phase aimed at gaining a deep understanding of the framework’s
architecture. A detailed breakdown of Lithops components was carried
out, identifying their responsibilities and relationships. This understand-
ing was essential to determine the optimal point where the Profiler should
be integrated, so it could work harmoniously with other system compo-
nents and support the execution of multiple workers in parallel.

• Component Analysis: During the initial days, key components such as
the Handler, JobRunner, and Invoker of Lithops were carefully analyzed.
The way each of these modules handled task distribution and worker com-
munication was evaluated. This analysis allowed us to identify that the
Profiler should be strategically created alongside the Handler to effec-
tively capture performance metrics without interfering with the core task
execution logic.

• Modular Design and Scalability: With the knowledge acquired, a
modular Profiler was designed, capable of being integrated as an indepen-
dent module within Lithops. This modular approach allowed the Profiler
to be activated and deactivated based on user needs without impacting
the base functionality of the framework. Additionally, it was designed so
that each running worker could operate with its own Profiler instance,
ensuring that the system could scale horizontally without bottlenecks in
metric collection, as discussed earlier.

• Initial Prototype: Once the design was defined, a simple Profiler pro-
totype was developed to validate its integration with Lithops. This pro-
totype included basic metric collection capabilities, such as CPU usage.
During this phase, tests were conducted to confirm that the Profiler could
effectively scale along with the workers without causing significant system
overhead.

• Validation and Preparation for Full Development: Before moving
on to full development, design reviews were conducted to ensure that all
aspects of the system, from metric collection to storage and visualization,
were consistent with the performance and usability objectives. A detailed
roadmap was prepared for development, including key milestones such as
full integration with the Lithops backend and the creation of user docu-
mentation to facilitate the Profiler’s adoption.

• Iteration and Refinement: After the prototype validation, the Pro-
filer’s design was iteratively refined. More metrics were added, exception
handling was improved, and integration with Prometheus Pushgateway
for real-time metric storage was implemented. Adjustments were made to
optimize performance, including setting collection intervals and efficiently
managing concurrency between multiple Profiler instances.

34



• Use of Managed Prometheus for Run Lithops Cloud: During the
development and testing of the Profiler, it was identified that self-managed
Prometheus could not efficiently scale in high-concurrency environments,
resulting in significant overhead that affected system performance. To
resolve this issue, AWS Managed Prometheus was adopted, offering an
optimized and scalable infrastructure for real-time metric collection. This
decision allowed for stable and efficient performance in environments with
large numbers of serverless functions, eliminating the scalability issues
observed earlier.

• Security Considerations: During the design phase, security aspects
were also considered, particularly for implementation in Run Lithops
Cloud. Access control mechanisms were designed to ensure that the met-
rics collected by the Profiler were accessible only by authorized users,
respecting data privacy and security in a multi-tenant environment.

Coding

• Description: The coding phase followed an iterative and agile approach,
where small, manageable increments of functionality were developed,
tested, and refined continuously. This approach ensured that each new
feature was smoothly integrated into the system without introducing re-
gressions or performance issues.

• Technical Challenges:

– Minimizing Overhead: One of the main challenges during coding
was minimizing the overhead introduced by the Profiler. Since the
Profiler had to operate in real-time, it was crucial that it did not
significantly interfere with the performance of the applications being
monitored. The metric collection interval (profiler timeout) was
optimized to ensure that metrics were collected at appropriate inter-
vals without overloading the system. Additionally, a random delay

was implemented to stagger metric collections across different work-
ers. This helped prevent multiple Profiler instances from sending
metrics simultaneously, which could cause system load spikes.

– Handling Terminated Processes: Another important chal-
lenge was handling processes that unexpectedly terminated. The
psutil.NoSuchProcess exception was used to capture and handle
these situations without interrupting the overall operation of the Pro-
filer. This ensured that the system could continue collecting metrics
from other active processes, maintaining the stability and integrity
of the collected data.

Testing
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• Description: Testing was crucial to ensuring that the Profiler could re-
liably operate across a wide range of scenarios, from local development
environments to cloud deployments with thousands of workers. Unit, inte-
gration, and stress tests were conducted to validate both the functionality
and efficiency of the system.

• Technical Challenges:

– Scalability Testing: Simulations were conducted involving multi-
ple workers running parallel functions, with the Profiler collecting
and sending metrics to Prometheus in real-time. Initially, it was
thought that the Profiler’s overhead was significant due to the in-
crease in overhead as more functions ran in parallel. However, after
detailed investigation, it was determined that the Profiler actually
had minimal overhead. The real issue lay with Prometheus, which
did not scale adequately under intensive workloads. These tests con-
firmed that, despite the initial hypothesis, the Profiler could handle
large volumes of data without compromising system performance,
ensuring its ability to scale efficiently in serverless environments.

I would like to highlight this challenge since it was discovered that the
overhead increased with workloads involving hundreds of functions
running in parallel. In certain workloads with up to 200 functions, the
overhead was acceptable; however, beyond that number, the overhead
began to increase significantly.

After analyzing multiple logs and implementing debugging mecha-
nisms in the Profiler, everything indicated that a process was not
terminating correctly. Therefore, the investigation focused on thor-
oughly reviewing all possible factors that could cause process inter-
ruption.

Once this possibility was ruled out, implementation and testing of
a version using Managed Prometheus continued. In this version,
regardless of the number of functions running, the overhead always
remained minimal. This led to the conclusion that the issue lay in the
scalability of the self-managed version of Prometheus, which was an
initial hypothesis not confirmed until this problem was encountered.

Therefore, the decision was made to implement the version with Man-
aged Prometheus to ensure the scalability of Run Lithops Cloud.
This is because, in Run Lithops Cloud, we can manage the backend
(and therefore Prometheus), unlike using Lithops in its native form.

Additionally, native Lithops users were advised through documenta-
tion that a self-managed Prometheus server could face scalability is-
sues under intensive workloads. If users encounter this problem, they
are recommended to create a workspace in Managed Prometheus or
similar services to mitigate it.

This issue will be the next step in ensuring proper monitoring in
any version of Lithops. A possible solution will be to connect multi-
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ple Prometheus nodes in a federated setup and complement it with
Thanos to improve scalability, ensure long-term storage, and pro-
vide unified queries, which would efficiently manage large volumes of
metrics in any Lithops environment.

– Resilience Testing: Tests were conducted to validate the system’s
ability to automatically recover from temporary network failures and
other infrastructure issues. These tests ensured that the Profiler
could retry failed metric submissions and continue operating reliably,
even in adverse conditions.

Deployment

• Description: The deployment of the monitoring system in Lithops was
carried out in two main environments: the open-source version of Lithops
and Run Lithops Cloud. It is important to note that the Profiler, being
integrated into Lithops’ codebase, does not require a special deployment.
Once users install or upgrade to a new version of Lithops, the Profiler is
automatically available for use.

• Automated Configuration: One of the key advantages of the Profiler is
that it does not require any specific configuration for its operation. Since
Lithops already sent some basic statistics to Prometheus Pushgateway, the
Profiler’s implementation simply extends this mechanism. As long as the
log level (log level) is set to DEBUG, the Profiler is automatically acti-
vated and begins collecting and sending detailed metrics to Prometheus.
This means that users can continue using their existing Prometheus con-
figuration without needing to make additional adjustments for the Profiler
to function correctly.

• Automation in Run Lithops Cloud: In the SaaS version of Lithops,
the configuration of Prometheus and related services was automated. This
automation allowed users to deploy the monitoring system with predefined
configurations, reducing deployment complexity and minimizing manual
intervention. This was crucial to ensure that users could quickly start
using the Profiler with minimal configuration.

• Comprehensive Documentation: To facilitate the use of the Profiler,
detailed documentation was developed, including step-by-step guides for
configuring and using the monitoring system. This documentation covers
everything from basic installation to advanced configurations, ensuring
that users can fully leverage the Profiler’s capabilities in their own envi-
ronments.

This deployment phase was thus designed to maximize ease of use and min-
imize entry barriers, ensuring that both open-source and Run Lithops Cloud
users could benefit from the advanced monitoring capabilities without addi-
tional complications.
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3.4.3 Integration Process

The integration process of the Profiler into Lithops was designed with a rigor-
ous and methodical approach, employing software design principles that ensure
modularity, cohesion, and maintainability. The integration was structured so
that each system component functions independently but is efficiently connected
to the others, forming a cohesive and robust system. Below is a detailed de-
scription of how this integration was achieved, supported by design methods
and patterns.

Modular Design

• The principle of Separation of Concerns was central to the design
of the Profiler. Each system component, represented by a specific class,
was designed with a clearly defined responsibility. This approach not only
facilitates the independent development and testing of each component
but also reduces complexity and improves code maintainability.

• Metric Collection Components: Classes such as
CPUMetricCollector, MemoryMetricCollector, DiskMetricCollector,
and NetworkMetricCollector are responsible solely for collecting
specific metrics. This modular design allows each of these collectors to be
implemented and optimized independently without affecting other system
components.

• Metric Coordination and Management: The MetricCollector class
acts as a central container that organizes and manages the metrics col-
lected by the different collectors. This design ensures that metrics, al-
though coming from diverse sources, are handled in a uniform and consis-
tent manner.

Composite Design Pattern: Metric Organization and Aggregation

• The Profiler uses the Composite Design Pattern, where
MetricCollector plays the role of a composite object that aggregates and
manages instances of the collected metrics. This pattern is well-suited to
represent the hierarchy of metrics in a system where multiple collectors
contribute to a larger, more complex data collection.

• Metric Aggregation and Organization: MetricCollector col-
lects metrics from various collectors and stores them in organized lists
(cpu metrics, memory metrics, etc.). This approach keeps the metrics
organized and easily accessible by type or sequentially, facilitating further
analysis and processing.

• Unified Interface for Updates: The update function in
MetricCollector allows the integration of new collected metrics,
ensuring that the metrics are synchronized and kept up-to-date at all
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times. This design promotes consistency and makes it easier to extend
the system with new types of metrics in the future.

Cohesion through Well-Defined Interfaces

• The integration of the different components of the Profiler was
achieved through well-defined interfaces, ensuring that each component
could interact with others without needing to know internal implementa-
tion details. This approach follows the Principle of Abstraction, which is
key to maintaining cohesion and reducing dependencies between modules.

• Metric Collectors and MetricCollector: Methods such as
collect metric and collect all metrics define how metrics are col-
lected and aggregated. These interfaces allow MetricCollector to com-
municate with the various collectors without needing to know how each
type of metric is implemented.

• Orchestration of the Monitoring Process: The Profiler class
uses these interfaces to orchestrate the collection and transmission
of metrics. The start profiling function centralizes the pro-
cess, calling collect all metrics to gather data and then invoking
send metric to prometheus for transmission. This design ensures that
the Profiler acts as a conductor, integrating all components into a coherent
and controlled workflow.

Decorator Design Pattern: Exception Handling and Resilience To
ensure system resilience and effectively handle errors, an approach based on the
Decorator Pattern was implemented. This pattern allows extending the behavior
of the Profiler classes by adding specific functionalities, such as exception
handling or retries, without modifying the core logic.

• Exception Handling via Decorators: The Profiler classes are
wrapped in decorators that capture and manage exceptions. For example,
if a process terminates unexpectedly, the corresponding decorator inter-
cepts this exception, ensuring the system continues to operate without
interruption.

• Exponential Retries with tenacity via Decorators: Additional dec-
orators implement exponential retries for metric transmission. These dec-
orators apply automatic retries with increasing time intervals in the event
of temporary failures, ensuring that critical operations are completed with-
out manual intervention.

Minimizing Overhead: Efficient Configuration and Synchronization

• The Profiler also incorporates mechanisms to minimize overhead
and optimize performance by efficiently configuring timing and synchro-
nizing tasks.
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• Configuration of profiler timeout: The integration allows adjusting
the time between metric collections via the profiler timeout variable.
This provides users with the flexibility to optimize Profiler performance
based on the specific needs of their environment, allowing a balance be-
tween metric precision and resource usage.

• Synchronization with random delay: To avoid load spikes when mul-
tiple instances of the Profiler run simultaneously, a random delay was
implemented. This technique staggers metric collections over time, reduc-
ing the likelihood of simultaneous operations overloading the system.

System Adaptability and Scalability

• The modular design and integration based on clear interfaces al-
low the Profiler to be adaptable and scalable across different environments,
from local machines to distributed cloud infrastructures.

• Adaptability to Different Environments: The modularity allows
users to configure the Profiler to collect different types of metrics and
send them to various destinations (local or cloud), adjusting parameters
such as collection interval and metric destination.

• System Scalability: Each Profiler instance operates independently, col-
lecting metrics from specific processes without interfering with other pro-
cesses or instances. This ensures that the system can scale efficiently,
handling a large number of workers without creating bottlenecks or com-
promising the integrity of the collected data. In any case, the bottleneck
lies with Prometheus, which will be addressed in the future improvements
section.

Integration Validation and Testing

• To validate that the Profiler integration functioned coherently
and efficiently, extensive integration tests were conducted:

• Cohesion Testing: It was ensured that all classes and methods
in the Profiler worked together without conflicts, guaranteeing that
metrics collected by different collectors were correctly integrated into
MetricCollector.

• Performance Testing: The impact of the Profiler on the overall system
performance was evaluated, ensuring that the overhead was minimal and
that the synchronization of collections did not cause significant latency or
load spikes.

• Scalability Testing: Simulations with a large number of concurrent
workers confirmed that the system maintained its performance and ac-
curacy in metric collection, demonstrating its ability to scale seamlessly.
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This meticulous approach to the integration process ensures that the Profiler
is not only effective and efficient but also highly adaptable and scalable to meet
the demands of modern serverless environments.

3.5 Integration with Existing Systems and Platforms

The integration of the Profiler into Lithops has been designed to ensure com-
patibility with multiple cloud platforms and interoperability with other systems
through efficient APIs. Below are the key aspects of this integration.

3.5.1 Compatibility with Cloud Platforms

The compatibility of the Profiler with multiple cloud platforms is essential for
its deployment in diverse environments. This is achieved primarily through the
use of cross-platform tools and libraries, as well as its direct integration into the
Lithops codebase.

Use of psutil for Cross-Platform Compatibility One of the main strate-
gies to ensure compatibility across different environments has been the use of the
psutil library. As mentioned earlier, this library is responsible for collecting
system metrics (such as CPU, memory, disk, and network usage) and is com-
patible with a wide range of operating systems, including Linux, Windows, and
macOS. This allows for metrics collection without requiring specific adaptations
for each operating system.

Direct Integration into Lithops Code The Profiler has been directly in-
tegrated into the Lithops source code, meaning it does not require complex ad-
ditional configurations or separate deployments. This integration ensures that
the Profiler is automatically available in any environment where Lithops is exe-
cuted, whether in the cloud or on a local server. This strategy greatly simplifies
the deployment process and reduces configuration errors, ensuring the Profiler
works consistently across all environments supported by Lithops.

Compatibility Testing Extensive testing was conducted to ensure the Pro-
filer works correctly on different backends such as localhost, Lambda, VMs, Ku-
bernetes, and others. These tests confirmed that, thanks to the use of psutil
and its direct integration with Lithops, the Profiler can operate seamlessly across
any of these platforms.

3.5.2 API and Interoperability

The Lithops Profiler has been designed to efficiently integrate with other systems
using standard APIs. In this context, interoperability is a key aspect achieved by
adapting APIs to work in both open-source environments and the SaaS version
of Lithops. Below are the most relevant aspects of this integration.
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Access to Collected Metrics Access to the metrics collected by the Profiler
is performed through Prometheus’ native API. This widely used API ensures
that metrics can be accessed and queried uniformly in different environments,
whether using managed Prometheus (such as AWS Managed Prometheus) or a
native Prometheus deployment.

• Uniformity in Metric Access: In both the open-source Lithops envi-
ronment and the SaaS version, the metrics collected by the Profiler are
available through the Prometheus API. This means that, regardless of
whether a native or managed Prometheus deployment is used, the method
of accessing the metrics is consistent, facilitating integration with existing
monitoring and analysis tools.

API Evolution for Metric Submission Initially, Lithops had a simple API
that allowed the submission of individual metrics to Prometheus Pushgateway.
This API has been improved to allow for the submission of grouped metrics,
optimizing efficiency and reducing network overhead.

API Versions It is important to note that there are two versions of this API
tailored to the different environments in which Lithops is deployed. However,
in both versions, the metrics provided and the configuration are the same; only
the architecture differs, improving Prometheus’ performance.

• API for Lithops Open Source: This version of the API is designed to
work in Lithops’ native open-source environment. In this case, the API
uses standard Prometheus configurations to send grouped metrics. Users
deploying Lithops in their own environments can access and configure this
API to integrate it with their Prometheus instances.

• API for Lithops SaaS (Run Lithops Cloud): For the ”Run Lithops
Cloud” project, a SaaS platform based on Lithops, a specific version of
the API has been developed. This version is optimized to function in a
managed cloud environment, in this case, the backend of Run Lithops
Cloud.

Key Differences Between Versions: While the basic functionality of
the API is maintained in both versions, the implementation in Lithops’
SaaS environment includes additional measures to ensure that metrics are
only accessible by authorized users in a shared environment. For this
reason, the SaaS API version requires a token to authenticate requests.

Advantages of the Run Lithops Cloud Version: This version of-
fers a significant advantage in terms of scalability. Integrated with AWS
Managed Prometheus, it ensures immense scalability that guarantees the
proper collection and processing of all metrics, even in environments with
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a large number of workers and massive data volumes. This allows the
platform to efficiently handle large-scale workloads without compromising
the accuracy or availability of the collected metrics.

Conclusion on Interoperability and API The evolution and adaptation of
the Lithops Profiler API demonstrate a commitment to interoperability and effi-
ciency across different environments. By improving the API to support grouped
metric submissions and creating specific versions for open-source and SaaS envi-
ronments, Lithops ensures that the Profiler can effectively integrate with other
monitoring tools and systems, facilitating its adoption and use in various sce-
narios. This reinforces the Profiler’s ability to operate efficiently and securely in
large-scale production environments, both in the cloud and on-premises infras-
tructures, always ensuring the necessary scalability and accuracy for effective
monitoring.

3.6 Performance Optimization and Scalability

Performance optimization and scalability are fundamental pillars in the design
and operation of the Lithops Profiler. These aspects ensure that the system can
handle variable workloads efficiently, adapting to user needs without compro-
mising service quality.

3.6.1 Auto-Scaling Mechanisms

Implemented Auto-Scaling Mechanisms The Lithops Profiler is designed
to operate in highly dynamic environments where workloads can fluctuate sig-
nificantly. To manage these changes efficiently, auto-scaling mechanisms have
been implemented to automatically adjust system resources based on demand.

• Horizontal Scalability: The Profiler in Lithops can scale horizontally,
meaning that more Profiler instances can be added in response to in-
creased workload. This is achieved by running multiple worker instances
in parallel, each with its own Profiler that monitors and collects metrics
independently.

• Integration with AWS Managed Services: In Run Lithops Cloud,
AWS Managed Services’ auto-scaling capabilities, such as AWS Lambda
and AWS Managed Prometheus, are leveraged. These services allow the
system to automatically scale resources based on usage metrics and work-
load, ensuring that the optimal amount of resources is always available
without manual intervention.

It is important to note that the Open Source version does not scale due
to the nature of Prometheus.
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Examples of Automatic Resource Adjustment

• Workload-Based Scaling: When an increase in the number of serverless
functions needing monitoring is detected, the system can automatically
deploy more Profiler instances to handle the increased metrics collection.
For example, if a large number of workers are activated to execute concur-
rent tasks, more Prometheus instances can be deployed, or the capacity
of AWS Managed Prometheus can be increased to handle the additional
load without loss of performance.

• Automatic Downscaling: Similarly, when the workload decreases, the
system can automatically reduce the number of Profiler instances or de-
crease the capacity of managed services, thereby reducing resource usage
and optimizing costs.

3.6.2 Resource Management

Implemented Resource Management Strategies The monitoring solu-
tion in Lithops is designed to be resource-efficient without compromising system
performance. Here are the strategies implemented:

• Periodic Metric Collection: Instead of continuously collecting metrics,
the system can be configured to do so periodically and as described pre-
viously. This not only reduces CPU and memory load but also decreases
network traffic and data storage, optimizing resource usage.

• Efficient Thread Usage: The Profiler uses psutil’s threading capabili-
ties to monitor multiple child processes of the JobRunner in parallel with-
out the need to create additional processes. This allows for more efficient
use of system resources by reducing the overhead typically associated with
creating and managing multiple independent processes.

• Optimized Metric Submission: Instead of sending metrics individu-
ally, the Profiler batches collected metrics and sends them in groups to
Prometheus. This approach reduces the number of necessary network
requests, minimizing bandwidth usage and improving overall system effi-
ciency.

These strategies ensure that the Lithops Profiler maintains an optimal bal-
ance between performance and resource usage, allowing for efficient operation
in a variety of scenarios and deployment environments.

3.7 Security and Reliability Considerations

3.7.1 Security Measures

Implemented Security Measures Security in the Lithops monitoring sys-
tem is a priority to protect the collected data and maintain system integrity at
all times. The implemented measures include:

44



• Data Encryption in Transit: All communications between the Pro-
filer and Prometheus are protected by TLS (Transport Layer Security)
encryption. This ensures that sensitive data cannot be intercepted or
altered during transmission.

• Authentication and Authorization: Access to the system and col-
lected metrics is controlled through strict authentication and authoriza-
tion mechanisms.

– IAM Roles: In the SaaS version of Lithops, IAM (Identity and
Access Management) roles are used to define which users can access
which resources, ensuring that only users with the proper permissions
can view or manipulate metrics.

– Bearer Tokens: Each user receives a unique Bearer token, which
must be presented with every request to the Prometheus API, ensur-
ing that the request originates from an authorized user.

• Prometheus API Security: The Prometheus API used to access
collected metrics is protected by authentication mechanisms. In the
SaaS Lithops environment, this API is integrated with AWS Managed
Prometheus, which includes additional security controls provided by AWS,
such as automatic credential rotation.

• Secure Exception Handling: The Profiler is designed to handle ex-
ceptions securely. When errors are encountered during metric collection,
such as the unexpected termination of a process, the system captures and
handles these errors without compromising the security or integrity of the
system.

3.7.2 Reliability and Fault Tolerance

System Fault Tolerance Features The reliability of the Lithops monitoring
system is achieved through several fault-tolerance features, ensuring that the
system remains operational and that data is collected and stored securely, even
in the event of temporary failures or disasters.

• Exponential Backoff for Network Failures: In cases of network fail-
ures or when the connection to Prometheus is temporarily unavailable,
the system uses the Tenacity library to implement exponential backoff re-
tries. These automatic retries ensure that metrics are sent correctly after
increasing intervals. If retry limits are reached, the metrics are discarded
to maintain the integrity of real-time data (see Figure 6).
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Figure 6: Exponential backoff retry mechanism using Tenacity.

• Critical Exception Handling: The system is designed to handle critical
exceptions in a way that the metric collection process is not interrupted by
unexpected process termination or system failures. Exceptions related to
processes and metric submission are captured and handled without halting
metric collection for other processes.

Strategies for Ensuring High Availability and Disaster Recovery

• Redundant Deployment: In Run Lithops Cloud, the monitoring infras-
tructure is deployed redundantly across multiple AWS availability zones.
This ensures that even if one availability zone fails, the system can con-
tinue operating without interruptions.

• Automatic Recovery: In case Prometheus fails, the Profiler, using
the Tenacity library, attempts to retry metric submission several times
over a predefined time range. If, after these attempts, metrics cannot
be sent, they are discarded to avoid accumulating outdated data. Once
Prometheus becomes operational again, the Profiler resumes sending real-
time collected metrics, ensuring that the metrics always reflect the current
system state and avoiding the introduction of outdated data into the mon-
itoring system.

These security and reliability measures ensure that the Lithops monitoring
system is robust and prepared to operate securely in various environments.
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3.8 Validation and Testing

3.8.1 Testing Methodologies

Overview of Testing Methodologies The validation and testing of the
Profiler in Lithops were carried out through a comprehensive and structured
approach to ensure the system’s robustness, reliability, and performance. The
testing process was meticulously planned to cover all aspects of the Profiler’s
functionality, from individual components to the fully integrated system.

Unit Testing Unit tests were the first step in the testing pro-
cess. Each class and function within the Profiler, such as
CPUMetricCollector, MemoryMetricCollector, DiskMetricCollector,
and NetworkMetricCollector, was tested in isolation to verify that they
behaved as expected under various conditions. Mocking techniques were used
to simulate different system states, allowing for the creation of controlled test
environments. For example, calls to psutil were mocked to return predefined
values, allowing for the verification of metric collection logic without relying on
real system metrics.

Integration Testing Integration tests focused on ensuring that the various
components of the Profiler worked together seamlessly. This phase included
testing the interaction between MetricCollector and individual metric col-
lectors, as well as the integration of the Profiler with the Lithops framework.
These tests verified that metrics were collected, aggregated, and transmitted to
Prometheus accurately. Additionally, it ensured that the Profiler did not inter-
fere with the normal execution of serverless functions, maintaining the overall
performance and reliability of the system.

Performance Testing Given the distributed nature of serverless environ-
ments and the potential for high concurrency, performance testing was crucial.
The Profiler was subjected to scenarios with thousands of concurrent serverless
functions to assess its ability to handle large-scale operations without introduc-
ing significant overhead. Performance tests focused on measuring system re-
source consumption (CPU, memory, and network) under high load conditions,
ensuring that the Profiler remained efficient and did not become a bottleneck.

Fault Tolerance Testing Fault tolerance tests were conducted to evaluate
the Profiler’s resilience in the face of failures, such as process terminations, net-
work interruptions, or system failures. The testing process simulated various
failure scenarios, such as the abrupt termination of monitored processes or net-
work disconnection during metric transmission. The goal was to ensure that
the Profiler could handle these failures efficiently, either by retrying operations
or shutting down safely without data loss. The system’s ability to recover from
failures and resume normal operation without manual intervention was a key
focus of these tests.
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End-to-End Testing End-to-end tests involved deploying the Profiler in a
full Lithops environment, simulating real-world workloads. These tests validated
the complete data flow, from metric collection and aggregation to transmission
and visualization in Prometheus. End-to-end testing was crucial to verify that
the system met overall requirements and functioned correctly in an integrated
environment, with all components interacting as expected.

Security Testing Security tests were conducted to ensure that the Profiler
adhered to best practices for data protection, access control, and secure com-
munication. Tests were performed to verify that metrics were transmitted se-
curely to Prometheus, unauthorized access was prevented, and data integrity
was maintained. Security testing also evaluated the effectiveness of encryption,
authentication, and authorization mechanisms in protecting sensitive informa-
tion.

3.8.2 Testing Execution

Approach for Test Execution In this thesis, unit and integration tests will
be conducted using a custom test pipeline that allows detailed control over the
execution and verification of the collected metrics. This pipeline has been specif-
ically designed to execute tests sequentially, allowing each Profiler component
to be evaluated in isolation before proceeding to the full system integration.

Verification of Results and Collected Metrics The verification process
will be carried out through various pipelines, each focusing on specific areas:

Test 1: Fibonacci (1 stage) The first test will focus on unit tests, where
each class and function of the Profiler will be evaluated individually. In this
phase, the tests will simulate different system states, verifying that the collec-
tors’ metrics reflect the expected and correct behavior.

In this test, a localhost backend will be used, launching 10 functions that
calculate the Fibonacci number of 44.
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1 import time

2 from lithops import FunctionExecutor

3

4 def fib(n):

5 if n <= 1:

6 return n

7 else:

8 return fib(n-1) + fib(n-2)

9

10 def main():

11 with FunctionExecutor(log_level=’DEBUG ’) as fexec:

12 fib_numbers = [42] * 10

13 futures = fexec.map(fib , fib_numbers)

14 results = fexec.get_result(futures)

15

16 for result in results:

17 print(result)

18

19 if __name__ == "__main__":

20 main()

Listing 1: Test code for Fibonacci calculation.

Results Analysis with Grafana Dashboards

CPU The graph in Figure 7 shows fluctuations in CPU usage, with peaks
up to 120% and lows around 90%. This behavior reflects the computation-
intensive nature of the Fibonacci algorithm, where high processing capacity is
required.

Figure 7: CPU usage by executor id during Test 1.

Disk Figure 8 shows the disk usage metrics. In ”Disk Read by execu-
tor id,” it is observed that no disk reads occurred during execution, which is
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expected as the Fibonacci calculation does not require disk access.
Regarding writes, ”Disk Write by executor id” indicates only small writes

(6 kB), likely related to system operations. The read and write rates (”Disk
Read Rate” and ”Disk Write Rate”) remain close to 0 MB/s, confirming that
disk operations were minimal, consistent with the computational nature of the
executed code.

Figure 8: Disk usage metrics during Test 1.

Memory Figure 9 shows the memory usage metrics during the execution
of the pipeline. Memory usage remains constant around 30 MB throughout the
test, which is consistent with the expected behavior for a calculation that does
not require large amounts of data or use complex memory structures.
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Figure 9: Memory usage metrics by executor id during Test 1.

Network In this case, network usage metrics are ignored because psutil
does not provide network metrics specific to the monitored processes, but rather
reports the machine’s total network usage. Since this is a local (localhost)
backend, these metrics are not relevant as they include network usage from
other unrelated tasks. However, in cloud backends like AWS Lambda, EC2,
or Kubernetes, where the machine is exclusive to task execution, these metrics
reflect actual network usage associated with our code, making them more useful
in such environments.

Test 2: Fibonacci (multistage) In this test, the code will be the same
as in Test 1, but during execution, we will introduce a 5-second sleep in the
middle of the process. The purpose of this adjustment is to observe how resource
usage behavior changes during the pause and to confirm that CPU, memory,
disk, and network usage metrics adjust as expected. This modification allows us
to validate whether the Profiler correctly captures idle periods and their impact
on resource usage.

Additionally, this test will use the AWS Lambda backend along with the
Managed Prometheus endpoint. In this way, we will be able to visualize the
results through the Run Lithops Cloud platform, leveraging managed monitor-
ing capabilities in the cloud.

The test will consist of four different stages:

• Stage 1: 400 functions calculating Fibonacci of 25.

• Stage 2: 100 functions calculating Fibonacci of 30.

• Stage 3: 25 functions calculating Fibonacci of 34.

• Stage 4: 4 functions calculating Fibonacci of 36.
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Results Analysis with Run Lithops Cloud

Gantt The Gantt chart shows the detailed durations of concurrent tasks
(Figure 10). We can see how tasks execute in parallel, with intense activity
peaks followed by idle periods. The visual representation of ”Active Calls” aligns
with the executions of the different stages, verifying the expected behavior of
concurrency during execution.

The lilac-colored fragments correspond to ”Other Times,” times that do not
belong to System Time, User Time, or Upload Time. It is notable that in many
functions, especially in the first stage (which has more functions running in
parallel), these Other Times are present. This behavior is due to the backoff
strategy in retries for sending metrics to Managed Prometheus. Even with
scalable solutions like Managed Prometheus, some overhead can be experienced
when working with high levels of concurrency. However, in the following stages,
as observed, this overhead is minimal.

Figure 10: Gantt chart showing task durations for Test 2.

CPU The CPU usage graph (Figure 11) reflects a progressive increase in
resource consumption as the stages progress. More complex functions, such
as those calculating higher Fibonacci numbers, show more intense CPU usage
towards the end of the process, reaching up to 100% average usage.

52



Figure 11: CPU usage during Test 2.

Disk In the disk usage analysis (Figure 12), both read and write operations
show very low absolute values. Although peaks are recorded during the more
complex calculation stages, the volume of data read and written is minimal,
reflecting that the execution of Fibonacci functions does not require intensive
disk usage. The read/write rate (Figure 13) follows a similar pattern, with
slight increases in write operations when storing the function results, though
the values are practically insignificant.

Figure 12: Disk usage during Test 2.
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Figure 13: Disk read/write rates during Test 2.

Memory The memory usage graph (Figure 14) shows a steady increase
during the execution of more complex tasks, reaching around 120 MB. This is
consistent with the increasing complexity of the Fibonacci calculations in the
later stages.

Figure 14: Memory usage during Test 2.

Network In the case of network usage (Figure 15), moderate read and
write activity is observed, corresponding to communication between workers and
the AWS Lambda service. The data transfer rate (Figure 16) follows a similar
pattern, with brief increases during the transmission of results and requests.
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Figure 15: Network usage during Test 2.

Figure 16: Network read/write rates during Test 2.

These graphs confirm that the Profiler accurately captures resource usage
metrics, and that the overall system behavior during executions matches expec-
tations, both during intensive calculation periods and idle times.

Test 3: Geospatial Data Processing for Evapotranspiration Cal-
culation (split size 4 with 25 files) This pipeline focuses on a geospatial
use case where evapotranspiration rates (ETC) are calculated for different geo-
graphic areas using the **Penman-Monteith method**. The primary objective
is to process large volumes of geospatial data, including **Digital Terrain Mod-
els (DTMs)**, along with climate data such as temperature, humidity, wind
speed, and solar radiation, to determine the water consumption by crops in the
**Murcia region of Spain**.

Workflow The pipeline is divided into several stages that handle data prepa-
ration, interpolation, and evapotranspiration calculation:

• Data Preparation:

– **Digital Terrain Models (DTMs)**: Input files in ASCII or Geo-
TIFF formats are converted into **Cloud Optimized GeoTIFFs
(COG)** for optimized performance.
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– **Climate Data (SIAM)**: Meteorological data, including tempera-
ture and humidity, is uploaded from a CSV file into an object storage
system (AWS S3).

– **Shapefile of Murcia**: A shapefile containing the boundaries of
the Murcia region is uploaded for delineating the areas of analysis.

• Data Interpolation:

– The terrain is divided into subtiles to increase parallelism. This en-
ables large DTMs to be broken into smaller chunks for processing in
parallel on AWS Lambda.

– Solar radiation is calculated for each subtile using geospatial process-
ing libraries such as **GRASS**. Additionally, climatic variables
(temperature, humidity, wind) are interpolated using **Inverse Dis-
tance Weighting (IDW)**, generating raster maps for each variable.

• Evapotranspiration Calculation:

– The **Penman-Monteith equation** is used to combine the inter-
polated maps of temperature, wind, humidity, and solar radiation,
along with a crop coefficient (Kc), which adjusts based on the crop
type (vineyards, olive groves, fruits, etc.).

– Evapotranspiration is computed both globally for the entire region
and specifically for each crop shape defined in the shapefile.

• Output Generation:

– The pipeline generates raster maps representing the daily evapotran-
spiration (in mm) for each processed subtile. These results are stored
back in the object storage and visualized using plots generated with
**Matplotlib**.

Expected Results The primary objective of this pipeline is to efficiently
process large volumes of geospatial data using **massive parallelism** and dis-
tributed computing on serverless environments. This pipeline provides infor-
mation such as the number of processed files and the estimated cost of the
execution. Additionally, the pipeline generates clear visual representations of
the processed data, such as maps illustrating water consumption by crops in the
region for a specific day.

By processing large geographic areas and generating precise evapotranspira-
tion maps, this pipeline aims to optimize water usage in agriculture, improving
sustainability in irrigation and crop management.

For more detailed information about this geospatial workflow, you can refer
to the official repository [39].
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Results Analysis with Grafana Dashboards In this pipeline, the number
of splits used to divide the data into smaller blocks can be adjusted. The number
of splits directly affects the number of tiles, as the number of tiles is equal to
the square of the split value. This value controls the level of parallelization
employed in the pipeline, which can influence the performance and efficiency of
the process. For this test, a split size of 4 was used, resulting in a total of 16
tiles, thereby improving data processing parallelization. Additionally, a total of
25 input files with an input size of 0.25GB were used.

Gantt The Gantt chart (Figure 17) clearly shows the concurrent tasks and
their duration. The fourth stage is the longest due to the nature of the code.
In this case, we see that the overhead (other times) is almost nonexistent.

Figure 17: Gantt Chart - Pipeline 3

CPU The CPU usage graph (Figure 18) shows stable fluctuations during
the most intensive processing phases, with peaks reaching 100%. Elevated usage
is observed midway through the execution, which likely explains the fourth stage
mentioned earlier, the longest of all. During the processing, the average usage
fluctuates mostly between 30% and 80%, indicating good resource utilization
without saturation.
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Figure 18: CPU Usage - Test 3

Disk Disk usage (Figure 19) shows peaks at the beginning, middle, and end
of the process, coinciding with the input and output file read/write operations.
The read/write rate (Figure 20) follows the same pattern, highlighting data
input reads and output writes.

Figure 19: Disk Usage - Test 3
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Figure 20: Disk Read/Write Rate - Test 3

Memory Memory usage (Figure 21) shows a gradual decrease after a high
initial consumption, stabilizing during most of the process. At the end of the
pipeline, another peak occurs, related to result storage.

Figure 21: Memory Usage - Test 3

Network Network usage (Figure 22) is distributed throughout the
pipeline, with notable peaks in the middle, corresponding to input/output file
transfers. Regarding the transfer rate, it is naturally higher at the beginning
and the end, as shown in Figure 23.
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Figure 22: Network Usage - Test 3

Figure 23: Network Read/Write Rate - Test 3

Test 4: Geospatial Data Processing for Evapotranspiration Cal-
culation (split size 5 with 25 files) To compare with the previous test,
another execution will be performed with the same parameters but with the
split size changed to 5, resulting in a total of 25 tiles.

Results Analysis with Grafana Dashboards

Gantt The Gantt chart (Figure 24) shows how the number of executed
functions is greater than in the third test. This is due to the split size change
from 4 to 5.
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Figure 24: Gantt Chart - Test 4

CPU The CPU usage graph (Figure 25) allows us to differentiate how
CPU usage rises and falls throughout each stage. This is interesting to compare
with the previous test to conclude which one makes better use of resources.

Figure 25: CPU Usage - Test 4

Disk Disk usage (Figure 26) shows the same behavior as in the previous
test.
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Figure 26: Disk Usage - Test 4

Figure 27: Disk Read/Write Rate - Test 4

Memory Memory usage (Figure 28) behaves as expected for this pipeline.

Figure 28: Memory Usage - Test 4
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Network The network usage (Figure 29) and transfer rate (Figure 30)
show similar patterns to the previous metrics.

Figure 29: Network Usage - Test 4

Figure 30: Network Read/Write Rate - Test 4

Bonus: Metabolomics Pipeline To conclude the tests, a brief presen-
tation of the Gantt diagram (Figure 31) corresponding to the execution of a
metabolomics pipeline developed with Lithops will be provided. This pipeline
aims to process mass spectrometry data at scale for metabolomics analysis,
leveraging the scalability and efficiency of serverless computing. The source
code and more details on this pipeline can be found in the official GitHub repos-
itory [22].
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Figure 31: Gantt Chart of the Metabolomics Test

3.8.3 Test Conclusions

The results obtained from the different pipelines have validated the performance
of the Lithops monitoring system in real-world scenarios, measuring resource
usage such as CPU, disk, memory, and network. Below are the main conclusions:

1. Efficient Use of Resources: Across all the pipelines executed, CPU
usage generally remained stable and aligned with expectations based on the
computational load of the tasks. Although there were peaks that reached 100%
usage, these moments coincided with computation-intensive phases, indicating
that the resources were being well utilized. Similarly, memory usage charts
showed consumption consistent with the operations of each pipeline, without
any evidence of resource saturation.

2. Scalable Parallelization: One key element in the pipelines was the ability
to adjust the level of parallelization by modifying the number of splits. As
this value increased, so did the number of sub-tasks (or tiles), improving the
distribution of the workload among the different workers.

3. Interaction with Storage: Network behavior was heavily influenced by
read and write operations to cloud storage, as expected. This was clearly seen
in the geoprocessing pipeline charts, where accessing large volumes of data is
an integral part of the process.

4. Comprehensive Monitoring: The use of Grafana and Prometheus en-
abled detailed monitoring of all utilized resources. Real-time data visualization
helped identify resource usage patterns and potential bottlenecks.

5. Pipeline Flexibility: The different pipelines tested demonstrated the
flexibility of Lithops to adapt to various use cases, from simple numerical cal-
culations like Fibonacci to complex geoprocessing workflows and metabolomics
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analysis. This versatility, combined with the fine-tuning of parallelism and
cloud data handling, reinforces the platform’s power in distributed computing
environments.

In summary, the tests showed that Lithops is a robust and efficient platform
for running large-scale serverless applications, capable of effectively handling
parallel task processing, resource usage, and cloud storage interaction. This
makes it an ideal option for tasks requiring high performance and scalability,
such as geospatial data processing and advanced scientific analysis.

3.9 Conclusions

The Profiler in Lithops has proven to be an effective and lightweight tool
for monitoring serverless environments and other execution contexts. The
tests conducted in various scenarios, such as local environments (localhost) and
serverless platforms, have confirmed its versatility. Furthermore, the system
has been tested both with self-managed Prometheus on a local server and with
Managed Prometheus, demonstrating its adaptability to different monitoring
configurations.

This versatile behavior allows jobs to be analyzed across multiple situations
and scenarios, which is key to ensuring that the collected metrics are applica-
ble in diverse environments. For users of the open-source version of Lithops,
the metrics can be visualized using Grafana, while users of the Run Lithops
Cloud platform can utilize the integrated dashboards, which provide clear and
accessible real-time metric visualizations.

In terms of performance, the Profiler efficiently collects key metrics (CPU,
memory, disk, network) with minimal impact on the pipelines. Its integration
with Prometheus and Grafana facilitates bottleneck detection and resolution.
Additionally, it adapts well to different levels of parallelism without negatively
impacting function execution, reinforcing its scalability and flexibility.

The system also proved resilient, handling temporary failures without com-
promising the integrity of the collected data. Although there are potential im-
provements, such as optimizing latency in capturing network and disk metrics,
the Profiler meets the monitoring requirements for distributed and serverless
systems, providing a robust and flexible solution.
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4 Metrics Visualization

This thesis provides the Lithops Profiler solution for both the open-source ver-
sion of Lithops and the Run Lithops Cloud platform, each using different tools
for metric visualization.

In the open-source version, users can set up a Grafana server to visualize
metrics collected by Prometheus. Grafana offers customizable dashboards that
display real-time metrics such as CPU, memory, and disk usage, providing a
flexible, cost-effective monitoring solution for users who manage their own in-
frastructure.

For Run Lithops Cloud, dedicated dashboards have been created using
Apache ECharts, a lightweight and integrated tool for real-time monitoring.
ECharts simplifies the process by providing pre-configured dashboards directly
within the platform, reducing setup complexity and optimizing resource use.

In summary, Grafana offers flexibility for open-source users, while Run
Lithops Cloud provides a streamlined experience through integrated ECharts

dashboards, ensuring effective metric visualization in both environments.

4.1 Grafana Dashboards

The use of Grafana for the open-source version of Lithops enables users to
visualize metrics collected from various jobs and functions. The dashboards
are designed to provide insights ranging from general performance overviews to
detailed, granular metrics. Below are the created dashboards:

4.1.1 Generic Dashboard

The Generic Dashboard provides an overall view of the resources used by all
the user’s jobs. It aggregates metrics such as CPU, memory, and disk usage
across all functions of the same job. Users can filter by specific call IDs or
view metrics for all calls. Additionally, if the backend supports it, users can filter
by worker instances, offering a broad perspective on resource consumption.
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Figure 32: Generic Dashboard for Lithops Jobs - CPU, Memory, and Disk
Usage.

Figure 33: Detailed Metrics Visualization in the Generic Dashboard.
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Figure 34: Aggregated Resource Usage Metrics in the Generic Dashboard.

4.1.2 General Performance Dashboard of the Executor

This dashboard aggregates performance metrics for each job executed by an
Executor. It provides a job-level summary, showing metrics like overall CPU,
memory, and execution time, making it ideal for users looking to monitor the
efficiency and resource usage of their jobs at a higher level.

Figure 35: Overall Performance Dashboard for Executor Jobs.
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Figure 36: Aggregated CPU and Memory Usage by Executor.

Figure 37: Execution Time and Resource Usage for Specific Executor Jobs.
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4.1.3 Detailed Dashboard per Call ID

The Detailed Dashboard per Call ID displays metrics for each specific call
ID within a job. Through Grafana’s variable filtering, users can select individual
call IDs or view all call IDs associated with a particular job. This dashboard
is useful for more in-depth analysis of specific calls within a job, providing
detailed insights into their performance.

Note: No images are attached to avoid redundancy, as these visualizations
follow a similar structure to the other detailed dashboards.

4.1.4 Detailed Dashboard by Executor ID (Serverless Backend)

This dashboard shows highly granular metrics for child processes of a specific
call ID within a job. It provides a detailed view of metrics such as CPU and
memory usage for each subprocess, making it a valuable tool for advanced users
who need deep insights into specific function executions. While not commonly
used, some Lithops users have found this dashboard useful in particular cases
for troubleshooting or performance tuning.

Note: Similar to the previous dashboards, images are not attached to avoid
redundancy.

4.2 Run Lithops Cloud

Run Lithops Cloud is the SaaS version of Lithops that allows users to run custom
or predefined notebooks using Lithops. This platform simplifies the execution
of serverless tasks while offering robust monitoring features. The focus of this
thesis is on the monitoring aspect of the platform.

Within the Monitoring page, users can see a list of jobs they’ve executed.
Each job is displayed as a card (Figure 38) that includes the job’s name, its
associated executor ID, and a preview plot that shows the number of active
calls (i.e., active functions) over time. This preview provides a quick overview
of the activity of the job without needing to delve into detailed dashboards.

Figure 38: Job Preview in Run Lithops Cloud Monitoring.

To avoid redundancy, no images of the individual metric dashboards will
be provided here, as they have already been discussed in the Profiler Testing
section. However, I include an image (Figure 39) of the Real-Time Overview
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page, which presents a live summary of the selected job. This page displays key
metrics such as average CPU usage, average disk and network usage, average
data transfer speed, and average CPU times in real-time.

Figure 39: Real-Time Overview in Run Lithops Cloud.

Additional features have been incorporated into the platform, such as the
ability to zoom in on all plots, hide specific series to focus on others, switch to
a logarithmic scale if necessary, or modify the step of the Prometheus query to
adjust the number of data points shown (Figure 40). These enhancements allow
for a more flexible and detailed analysis of job performance.

The switch to a logarithmic scale is located at the top-right corner of each
plot. Users can zoom in by scrolling or by dragging the temporal range bar
below the plot. The step of the query can be adjusted using the slider located
at the bottom of the dashboard, allowing for more or fewer data points to be
displayed depending on the desired level of detail.
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Figure 40: Additional Features for Monitoring in Run Lithops Cloud.
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5 Machine Learning Model for Runtime Opti-
mization

5.1 Theoretical Foundations

Predictive Models and Machine Learning: Machine Learning in Re-
source Optimization: Machine learning (ML) has emerged as a pivotal tool
for prediction and optimization in complex systems. It enables the analysis of
historical data patterns to forecast future behavior, particularly in dynamic en-
vironments such as serverless computing. In these systems, the ability to predict
resource usage and execution time is crucial for achieving efficiency. By training
models on runtime configurations, input sizes, and job characteristics, ML can
provide estimations of the required resources and the optimal number of parallel
tasks (or tiles) for minimal execution time.

Application to Monitoring and Scalability: Predictive ML models of-
fer significant advantages in monitoring and resource management. By using
real-time data, these models can anticipate resource demand and recommend
adjustments to function parallelization, optimizing execution time and reducing
latency. This approach is aligned with auto-scaling theories, where resource
allocation is dynamically adjusted based on predictive insights, ensuring opera-
tional efficiency and improved system responsiveness.

Relevant Studies and Supporting Theories: Several studies have high-
lighted the critical role of machine learning in optimizing cloud and serverless
environments:

[32] provides a foundational framework for understanding the mechanics of
machine learning in complex, probabilistic systems. This text is particularly
relevant to our goal of using ML models to predict optimal resource allocation
based on past execution data.

[13] discusses the co-design of hardware and software in cloud architectures,
emphasizing the need for intelligent, data-driven models that can improve sys-
tem efficiency. This paper supports the notion that ML models can be integrated
with serverless platforms to enhance scalability and resource management.

In the context of serverless computing, [44] addresses the use of machine
learning to estimate function execution times, a concept that aligns with the
predictive modeling approach we aim to implement. Their research demon-
strates the feasibility of using ML for performance prediction, which is crucial
for optimizing parallelization strategies.

[40] explores the workloads of serverless environments and provides insights
into optimizing function execution. This work highlights the potential benefits of
machine learning in fine-tuning resource allocation, ensuring that the serverless
functions run efficiently without over-provisioning resources.
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5.2 Model Application to Runtime Optimization

The proposed machine learning model will be trained using data from multiple
job executions in serverless environments. Key features include:

• Runtime Configuration: Parameters such as CPU, memory, ephemeral
storage, and the number of concurrent threads will be used to capture the
configuration of the serverless function.

• Input Characteristics: Data related to the number of input files, total
input size, and complexity of the tasks will be incorporated to provide a
comprehensive understanding of the workload.

5.2.1 Expected Contribution and Innovation

This model aims to fill a gap in the literature by applying machine learning
to predict the optimal number of splits or tiles for parallelization in serverless
environments, with the goal of minimizing execution time. The number of splits
or tiles determines how input data is divided among multiple functions, affect-
ing the overall parallelization. Rather than predicting the ideal resources to
allocate, this model focuses on determining the most efficient level of task par-
allelization based on runtime configuration and input data. While it is currently
a standalone predictive tool, this approach provides a more accurate method for
optimizing serverless function execution, with the potential for future integra-
tion into the Lithops ecosystem.

Supporting Research: [42] discusses the use of machine learning in cloud
environments for monitoring and optimization, providing a framework for inte-
grating predictive analytics into cloud workflows. This research supports our
approach to predictive monitoring and optimization in serverless platforms.

[26] presents a machine learning model for predictive autoscaling in serverless
environments. Their findings show that ML-based models can reduce costs and
improve performance by anticipating resource demand, a concept that directly
influences our model’s design for optimizing function parallelization.

By leveraging machine learning to anticipate and manage resource alloca-
tion, this research will contribute to the advancement of serverless computing,
setting a new benchmark for operational efficiency, cost management, and sys-
tem responsiveness.

5.2.2 Future Research Directions

Future research should focus on enhancing the performance of the machine
learning model. Additionally, there is potential to explore how data collected
from the profiler can enrich the model, improving its predictive accuracy and
optimizing execution times even further. The continued integration of real-time
data from the profiler and advancements in machine learning algorithms will
likely play a pivotal role in evolving serverless computing efficiency [38].
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5.3 Technologies Used

The development of the machine learning model for optimizing serverless func-
tion execution relies on several key technologies and libraries. These technologies
enable data collection, model training, and deployment, facilitating the integra-
tion of the predictive model with the Lithops platform.

5.3.1 XGBoost

XGBoost is an optimized gradient boosting algorithm designed to be highly
efficient, flexible, and portable. It was chosen for its strong performance in
predicting execution times and its ability to handle large-scale datasets with
multiple features. The algorithm allows for fine-tuning hyperparameters such
as learning rate, max depth, and number of estimators to achieve optimal model
performance.

5.3.2 Scikit-learn

Scikit-learn is used extensively for data preprocessing, model evaluation, and
feature engineering. The library provides tools for cross-validation, hyperpa-
rameter tuning, and performance metrics, making it essential for developing
and validating the machine learning model.

5.3.3 Pandas and NumPy

Pandas and NumPy are critical for data manipulation and analysis. These
libraries are used to clean, structure, and analyze the historical execution data
collected from Lithops jobs. They enable efficient handling of large datasets and
facilitate the extraction of meaningful insights through feature engineering.

5.3.4 Matplotlib and Seaborn

Matplotlib and Seaborn are used for data visualization, helping to interpret and
analyze the performance of the model. They are employed to plot feature im-
portance, residuals, and evaluation metrics, providing insights into the model’s
predictive power and accuracy.

5.4 Model Architecture

The architecture of the machine learning model is designed to predict the opti-
mal number of splits (tiles) for parallelizing tasks in a serverless environment.
The model processes various runtime and input features to make these predic-
tions, ultimately aiming to minimize execution time.

5.4.1 Data Ingestion

The model ingests historical data from previous Lithops job executions. This
data includes key parameters from the runtime configuration, such as:
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• Number of input files

• Input size

• Runtime memory

• vCPUs and ephemeral storage

• Worker processes and invoke pool threads

• Execution start and end times

This data is the foundation for training the machine learning model, allowing
it to learn how changes in configuration impact the duration of the job.

5.4.2 Feature Engineering

Feature engineering is a critical step in improving the model’s predictive ac-
curacy. Several features are created from the raw data to better capture the
relationships between the inputs and execution time. Examples include memory
per file, storage per input size, and vCPUs per GB. These features enrich the
dataset and help the model make more accurate predictions.

5.4.3 Model Training

XGBoost is chosen as the primary model for training. It is highly efficient for
tabular data and supports flexible parameter tuning. The model is trained on
data labeled with the execution time for each job configuration. By analyzing
how the runtime parameters and input data influence execution time, the model
learns to predict the number of splits (tiles) that optimize performance.

Additionally, Random Forest was tested as an alternative, but XGBoost
consistently demonstrated better performance in terms of predictive accuracy
and computational efficiency, making it the preferred choice for this use case.

5.4.4 Prediction and Validation

Once trained, the model is able to predict the optimal number of tiles for new job
configurations. The predictions are validated using real-world job executions,
and the results are compared to the predicted values. The profiler tool is used
to monitor actual performance, providing feedback that can further refine the
model.

5.5 Development Process

The development of the machine learning model was a structured process in-
volving data collection, model training, and evaluation.
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5.5.1 Data Collection and Preprocessing

Data was gathered from Lithops executions, capturing various runtime configu-
ration metrics and job characteristics. This historical data forms the backbone
of the model’s learning process. The data was preprocessed to ensure consistency
and formatted into a suitable structure for machine learning, with additional
features created through feature engineering.

5.5.2 Feature Augmentation and Synthetic Data

To improve the model’s robustness, synthetic data was generated using Gaus-
sian Mixture Models (GMM). This augmented the training data, helping the
model perform better in scenarios with limited data availability for certain con-
figurations. Feature engineering also played a crucial role in improving the
model’s predictive power by creating new features that capture important re-
lationships between runtime configurations and execution times. The following
code demonstrates the feature engineering and data augmentation process:
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1 def add_features(df):

2 """ Feature Engineering: Adding new features."""

3 df[’memory_per_file ’] = df[’runtime_memory_mb ’] /

df[’num_files ’]

4 df[’storage_per_file ’] = df[’ephemeral_storage_mb ’]

/ df[’num_files ’]

5 df[’vcpus_per_file ’] = df[’vcpus ’] / df[’num_files ’

]

6 df[’files_per_vcpu ’] = df[’num_files ’] / df[’vcpus ’

]

7 df[’size_per_file ’] = df[’input_size_gb ’] / df[’

num_files ’]

8 df[’memory_per_gb ’] = df[’runtime_memory_mb ’] / df[

’input_size_gb ’]

9 df[’vcpus_per_gb ’] = df[’vcpus ’] / df[’

input_size_gb ’]

10 df[’storage_per_gb ’] = df[’ephemeral_storage_mb ’] /

df[’input_size_gb ’]

11 df[’threads_per_worker ’] = df[’invoke_pool_threads ’

] / df[’worker_processes ’]

12 df[’memory_per_thread ’] = df[’runtime_memory_mb ’] /

df[’invoke_pool_threads ’]

13 df[’vcpus_per_thread ’] = df[’vcpus ’] / df[’

invoke_pool_threads ’]

14 return df

15

16 def augment_data_with_gmm(X, y, num_samples =100):

17 """ Augment data using Gaussian Mixture Model (GMM)

for synthetic data generation."""

18 gmm = GaussianMixture(n_components =5, random_state

=42)

19 gmm.fit(X)

20

21 X_augmented = gmm.sample(num_samples)[0]

22

23 # Augment y to match the number of samples

generated by GMM

24 y_augmented = np.tile(y, num_samples // len(y) + 1)

[: num_samples]

25

26 return X_augmented , y_augmented

Listing 2: Feature Engineering and Data Augmentation with GMM

This code first creates new features to better capture relationships between
input parameters and execution performance. Next, it uses a Gaussian Mix-
ture Model (GMM) to generate synthetic data, augmenting the dataset and
improving the model’s robustness in scenarios with limited data.

The feature importance plot (Figure 41) shows that the number of files and
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the number of tiles are the most critical features in predicting execution time.
The number of tiles directly affects the degree of parallelization, which has a
significant impact on the overall job performance. Additionally, runtime mem-
ory and input size also contribute to performance, although to a lesser extent.
Meanwhile, vCPUs have a smaller influence, suggesting that the distribution
of data (through tiles) and memory allocation plays a more decisive role in
optimizing execution duration.

Figure 41: Feature Importance in Predicting Execution Time

5.5.3 Model Selection and Training

Several models were considered, withXGBoost being selected due to its perfor-
mance with large datasets and high-dimensional feature spaces. Hyperparame-
ter tuning was conducted using GridSearchCV, optimizing parameters such as
learning rate, max depth, and number of estimators to improve accuracy. The
following code snippet demonstrates the process of tuning the hyperparameters:
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1 def randomized_search_xgboost(X, y):

2 """ Perform Randomized Search with Cross -Validation

to find the best XGBoost parameters."""

3 # Define the XGBoost model

4 xgb_model = xgb.XGBRegressor(objective=’reg:

squarederror ’)

5

6 # Define the parameter grid for tuning

7 param_dist = {

8 ’learning_rate ’: [0.01, 0.05, 0.1],

9 ’max_depth ’: [3, 5, 7, 10],

10 ’n_estimators ’: [100, 200, 500],

11 ’subsample ’: [0.6, 0.8, 1.0],

12 ’colsample_bytree ’: [0.6, 0.8, 1.0],

13 ’gamma’: [0, 0.1, 0.2],

14 ’reg_alpha ’: [0, 0.1, 1],

15 ’reg_lambda ’: [0, 0.1, 1]

16 }

17

18 # Perform the grid search

19 with parallel_backend(’threading ’):

20 grid_search = GridSearchCV(

21 estimator=xgb_model ,

22 param_distributions=param_dist ,

23 n_iter =20, # Number of combinations to

test

24 cv=5,

25 scoring=’neg_mean_squared_error ’,

26 verbose=2,

27 n_jobs=-1

28 )

29

30 # Fit the model

31 grid_search.fit(X, y)

32

33 # Output the best parameters and best score

34 print("Best␣Parameters:", grid_search.

best_params_)

35 print("Best␣Score:", np.sqrt(-grid_search.

best_score_))

36

37 return grid_search.best_estimator_

Listing 3: Hyperparameter Tuning using GridSearchCV with XGBoost

This code performs hyperparameter tuning by searching over a range of pa-
rameters for the best combination, ultimately selecting the most optimal con-
figuration for the XGBoost model based on cross-validation results.
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5.5.4 Model Evaluation and Optimization

The model was evaluated using negative mean squared error
(neg mean squared error) on test datasets. Outliers were handled by
removing extreme values using interquartile range (IQR). Cross-validation was
employed to ensure that the model generalized well across different scenarios,
avoiding overfitting.

1 Q1 = df_metrics[’duration ’]. quantile (0.25)

2 Q3 = df_metrics[’duration ’]. quantile (0.75)

3 IQR = Q3 - Q1

4

5 # Define bounds for outliers

6 lower_bound = Q1 - 1.5 * IQR

7 upper_bound = Q3 + 1.5 * IQR

8

9 # Remove outliers

10 df_metrics = df_metrics [( df_metrics[’duration ’] >=

lower_bound) & (df_metrics[’duration ’] <=

upper_bound)]

Listing 4: Outlier Removal Using Interquartile Range

As shown in Figures 42 and 43, the original dataset contained outliers that
significantly deviated from the majority of data points. After executing the
outlier removal code using the interquartile range (IQR) method, the outliers
were successfully removed, resulting in a cleaner dataset with more consistent
values.

Figure 42: Dataset with Outliers
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Figure 43: Dataset after Outlier Removal

5.6 Results

Data Source and Experimental Setup The data used for these experi-
ments originates from the executions of the Water Consumption Pipeline, a
serverless application designed to estimate water consumption based on geospa-
tial data. This pipeline was run multiple times under different configurations,
generating a range of execution metrics such as input size, number of tiles,
memory usage, and execution duration.

These execution logs formed the foundation for training the machine learning
model, allowing it to learn the relationship between runtime configuration, input
data, and execution time. By analyzing how the number of splits (or tiles)
affects the parallelization of tasks and the overall job duration, the model aims
to predict the optimal configuration for future executions.

The model was trained and tested using the historical execution data of this
specific pipeline, and the results presented in the following sections demonstrate
the model’s ability to predict execution time based on various configurations of
the Water Consumption Pipeline.

Model Validation and Residual Analysis The residual plot (Figure 44)
illustrates the difference between the predicted and actual values after training
the model. The points are scattered around the horizontal axis, representing
the zero error line. Although most points are close to this axis, a few outliers
indicate that the model does not perfectly predict execution times for all jobs.

The model’s performance was evaluated using the mean absolute error
(MAE), which measures the average magnitude of errors between the predicted
and actual values. In this case, the MAE was 31.06 seconds, indicating that, on
average, the predicted execution times deviate by 31.06 seconds from the actual
times. While this error is within a reasonable range, it suggests that there is
still room for improvement in the model.

82



Figure 44: Residual Plot.

The training data, denoted as X train, consisted of historical execution in-
formation, including parameters such as input size, number of tiles, memory
usage, and runtime configurations. The model was trained using these features
and the corresponding target variable: execution duration. The test data, la-
beled as X test, was used to evaluate the model’s performance.

For this test case, the following configuration was used as the X test input:

1 test_data = pd.DataFrame ({

2 ’num_files ’: [15],

3 ’n_tiles ’: [3],

4 ’input_size_gb ’: [1.0],

5 ’runtime_memory_mb ’: [2850] ,

6 ’ephemeral_storage_mb ’: [512],

7 ’worker_processes ’: [1],

8 ’invoke_pool_threads ’: [64],

9 ’vcpus ’: [1.61] ,

10 })

To predict the optimal number of tiles, the function predict optimal tiles

was called, passing a set of possible tile configurations: [9, 16, 25]. This
function predicts the execution duration for each configuration and selects the
one with the shortest predicted duration. The results were as follows:

• 9 tiles: 344.31 seconds

• 16 tiles: 405.11 seconds

• 25 tiles: 440.28 seconds
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Based on these predictions, the optimal number of tiles for this job configu-
ration was 9.

After running the job with the configuration in test data, the actual du-
ration observed in the Gantt chart (Figure 45) was approximately 368 seconds.
The difference between the predicted duration for 9 tiles (344.31 seconds) and
the observed duration (368 seconds) is:

368 seconds− 344.31 seconds = 23.69 seconds

This difference of 23.69 seconds is within the expected error margin, as
the model’s MAE was calculated to be 31.06 seconds. This suggests that the
prediction was reasonably accurate, given the inherent variability in execution
times.

Figure 45: Gantt chart showing the observed duration of approximately 368
seconds for the configuration with 9 tiles

Explanation of the predict optimal tiles Function The function
predict optimal tiles takes a trained model, a data scaler, test data, and a
list of possible tile configurations. It calculates the predicted execution duration
for each configuration and returns the optimal number of tiles that minimizes
the duration. The process involves:

• Modifying the test data by adjusting the n tiles value for each possible
configuration.

• Adding additional features through the add features function.

• Scaling the test data using the provided scaler to ensure consistency with
the model’s training data.

• Predicting the execution duration using the trained model.
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• Comparing the predicted durations and selecting the configuration with
the shortest execution time.

The following code snippet demonstrates the function:

1 def predict_optimal_tiles(model , scaler , test_data ,

possible_tiles , feature_columns):

2 """ Predicts the optimal number of tiles that

minimizes the duration for RandomForest."""

3

4 optimal_tiles = None

5 min_duration = float(’inf’)

6

7 for tiles in possible_tiles:

8 # Add the value of n_tiles to the DataFrame

9 test_data[’n_tiles ’] = tiles

10

11 # Add additional features using the

add_features function

12 test_data_with_features = add_features(

test_data.copy())

13

14 # Ensure the columns are in the same order as

used during training

15 X = test_data_with_features[feature_columns]

16

17 # Scale the features

18 X_scaled = scaler.transform(X)

19

20 predicted_duration = model.predict(X_scaled).

mean()

21

22 print(f"Predicted␣duration␣for␣{tiles}␣tiles:␣{

predicted_duration}")

23

24 # Check if this prediction has the minimum

duration

25 if predicted_duration < min_duration:

26 min_duration = predicted_duration

27 optimal_tiles = tiles

28

29 return optimal_tiles

Listing 5: Predicting Optimal Tiles for Minimizing Execution Time

5.7 Conclusions

The development of a machine learning model to predict the optimal number of
tiles for parallelization in serverless environments has shown promising results,
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with the model achieving a mean absolute error (MAE) of 31.06 seconds. While
the predictions are valuable, further improvement could be achieved with a
larger dataset.

Due to the cost of running additional controlled executions, the next step is
to leverage real-world data from Run Lithops Cloud users. This would allow
the model to continuously refine its accuracy across different workloads and
configurations.

The integration of the profiler and monitoring architecture has helped vali-
date the model’s predictions, ensuring consistency with real runtime data. Fu-
ture work could involve a deeper analysis of other metrics, such as CPU and
memory usage, to further enhance performance optimization. Ultimately, the
goal is to integrate the model into the Lithops ecosystem, providing users with
an efficient tool for optimizing serverless executions.

6 Final Reflections and Future Directions

This thesis presented the development and integration of a comprehensive moni-
toring and optimization system for serverless environments, focusing on Lithops

and its platform, Run Lithops Cloud. At the heart of this work lies the Profiler,
a tool designed to gather real-time metrics on resource usage across distributed
jobs, helping to identify performance bottlenecks, optimize resource allocation,
and improve parallel execution.

As discussed throughout the thesis, two versions of the Profiler were cre-
ated—one for the open-source version of Lithops, leveraging Prometheus and
Grafana, and another for Run Lithops Cloud, which integrates with Managed

Prometheus and provides custom dashboards using Apache ECharts. These
dashboards, whether through Grafana or Run Lithops Cloud, enable users to
monitor their workloads in real-time and gain detailed insights into system per-
formance.

Additionally, a machine learning model was designed to predict the optimal
number of tiles (or splits) for efficient parallel execution in serverless environ-
ments. This model proved capable of providing reasonably accurate predictions,
with a mean absolute error of 31.06 seconds, offering valuable guidance for op-
timizing workloads. However, there is still potential for improving the precision
and adaptability of the model.

6.1 Key Contributions

The key contributions of this thesis are:

• Development of the Profiler: The Profiler has proven to be a ro-
bust monitoring solution for tracking CPU, memory, disk, and network
usage across distributed jobs. Its architecture allows scalability, but over-
head issues were identified when many functions ran in parallel, even with
Managed Prometheus.
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• Customizable Dashboards:

– The open-source Grafana dashboards offer flexibility to users, en-
abling detailed tracking of jobs and resource usage.

– In Run Lithops Cloud, Apache ECharts dashboards simplify moni-
toring, providing real-time visualizations within the platform itself,
without requiring additional configuration.

• Machine Learning for Runtime Optimization: The machine learn-
ing model, developed for predicting the optimal number of tiles for job
parallelization, demonstrated potential for reducing execution times by
optimizing the task distribution and resource usage. However, further re-
finement of this model is needed to improve its accuracy and performance
in different scenarios.

• Community Feedback: The Profiler, alongside the Grafana dash-
boards and the Run Lithops Cloud platform, was presented to the mem-
bers of CloudLab. The feedback from the community was positive, with
recognition of the system’s practical value in improving serverless work-
load management. However, it was acknowledged that there is still room
for improvement, especially in terms of scaling and further integration of
the model with the Profiler.

6.2 Future Work

Several avenues for future research and improvement have been identified:

• Enhanced Integration Between Profiler and Machine Learning
Model: There is a significant opportunity to improve the integration
between the Profiler and the machine learning model, allowing for real-
time optimization based on live resource monitoring. This could lead to
dynamic adjustments in workload configurations, improving performance
during execution.

• Improving Model Precision: The machine learning model can be fur-
ther improved by incorporating additional data from real-world job exe-
cutions in Run Lithops Cloud. With more data, the model can generalize
better across different workloads, leading to more accurate predictions.

• Addressing Overhead in Large-Scale Parallelism: The overhead
encountered during high levels of parallel execution remains a challenge.
Future research should focus on refining how metrics are collected and
processed, especially in cases with hundreds of concurrent functions, to
minimize the impact on performance.

• Extending Metrics for Deeper Optimization: Incorporating addi-
tional metrics—such as CPU time per thread, disk I/O, and network la-
tency—could enhance the depth of optimization. This would allow the
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Profiler to provide even more granular insights into performance, en-
abling finer control over job configurations.

6.3 Final Thoughts

As I reach the conclusion of this thesis, it becomes clear that significant progress
has been made in narrowing the gap between real-time monitoring and machine
learning-driven optimization in Lithops. The development of the Profiler,
along with the flexible dashboards and machine learning model, has opened the
door to more intelligent and efficient management of distributed workloads. The
positive feedback from the CloudLab members confirms the value of this work,
but I know there’s still room for improvement.

Challenges remain—addressing overhead issues in large-scale parallelism, im-
proving the accuracy of the machine learning model, and refining the integration
between monitoring and optimization. These are areas that offer great potential
to further advance serverless computing.

Looking ahead, I feel a growing sense of excitement. The groundwork has
been laid, the tools have been built, and feedback has been taken on board. With
each step, we move closer to creating a more intelligent, adaptable, and efficient
system. The potential is immense, and I’m eager to continue this journey.
There’s still much to explore, and the future holds endless opportunities.
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8 Appendix: Lithops Profiler Configuration Tu-
torial

A Lithops Configuration

A.1 Profiler Timeout

The profiler timeout setting determines the frequency (in seconds) at which
the Lithops Profiler collects performance metrics. The default value is set to 1
second, offering a fine-grained view of the system’s performance. Adjusting this
value can help balance the level of detail in the performance data collected with
the overhead introduced by the monitoring process.

lithops:

profiler_timeout: 1 # Default value

A.2 Prometheus Configuration

For more details on configuring Prometheus for use with Lithops, please refer
to the dedicated section in the [25].

A.2.1 Key Configuration Options

When integrating Prometheus with Lithops for monitoring, it’s crucial to adjust
the default configuration to ensure no data is lost. By default, Prometheus is
configured to scrape metrics every 15 seconds, which might not be frequent
enough to capture all metrics sent by Lithops, especially if metrics are emitted
every second.

• scrape interval: Specifies how often Prometheus should scrape metrics
from monitored targets. To capture all metrics from Lithops, you should
set this value to match or exceed the frequency at which metrics are gen-
erated.

• scrape timeout: Specifies the maximum time Prometheus waits for
a scrape request to complete. Setting this appropriately ensures that
Prometheus does not time out while scraping metrics if the response is
slightly delayed.

For more information, refer to the official documentation [34].
Additionally, to learn how to adjust data points per minute in Grafana to

reduce costs, visit the official Grafana documentation [18].

A.3 Using a Remote Backend with Prometheus

In scenarios where Prometheus and Lithops are operating in different environ-
ments, such as Lithops running on AWS Lambda and Prometheus on an EC2
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instance, a remote backend setup becomes necessary. This section outlines the
steps to configure Prometheus to scrape metrics from a remote Pushgateway,
allowing for aggregation and monitoring of metrics from serverless functions or
other distributed systems.

1. Deploying Prometheus on EC2: Start by installing Prometheus on
your EC2 instance. This can be achieved through package managers like
apt-get for Debian-based systems:

sudo apt-get update

sudo apt-get install prometheus

Ensure that Prometheus is configured to start on boot and is running
properly.

2. Setting up Pushgateway with Docker: Unlike the local setup where
Pushgateway might be installed via apt-get, in a cloud environment like
EC2, deploying Pushgateway with Docker is recommended.

docker run -d -p 9091:9091 prom/pushgateway

This command will start Pushgateway and expose it on port 9091, making
it accessible for receiving metrics.

3. Security Group Configuration: Adjust the EC2 instance’s security
group settings to allow inbound traffic on ports 9090 (Prometheus) and
9091 (Pushgateway) to ensure external accessibility.

4. Prometheus Configuration: Modify the prometheus.yml configura-
tion file to include the Pushgateway as a target for scraping:

scrape_configs:

- job_name: ’pushgateway’

static_configs:

- targets: [’localhost:9091’]

5. Lithops Configuration for Remote Metrics: In your
lithops config file, specify the remote Pushgateway endpoint:

prometheus:

pushgateway_url: ’http://<your-ec2-instance-public-ip>:9091’

Replace <your-ec2-instance-public-ip> with the actual public IP ad-
dress of your EC2 instance.

By following these steps, you can successfully set up Prometheus to monitor
Lithops metrics using a remote backend, ensuring comprehensive visibility across
distributed computing environments.

94



A.4 Using a Local Backend with Prometheus

Setting up a local backend for Prometheus to monitor Lithops is similar to the
remote configuration. The main difference lies in the deployment environment,
but the overall process remains consistent.

B AWS Managed Prometheus Integration with
Lithops

AWS Managed Prometheus simplifies the setup by providing a fully managed
Prometheus service, eliminating the need for manual infrastructure manage-
ment. To integrate AWS Managed Prometheus with Lithops, follow these steps:

B.1 Creating an AWS Managed Prometheus Workspace

1. In the AWS Management Console, navigate to Amazon Managed Ser-
vice for Prometheus.

2. Create a new Prometheus workspace, and note the workspace endpoint
provided after creation.

B.2 Configuring Lithops to Use AWS Managed
Prometheus

In the lithops config file, specify the endpoint of the AWS Managed
Prometheus service as follows:

prometheus:

pushgateway_url: ’https://<your-prometheus-workspace-endpoint>’

Replace <your-prometheus-workspace-endpoint> with the actual end-
point of your AWS Managed Prometheus workspace.

By leveraging AWS Managed Prometheus, you benefit from a fully man-
aged monitoring service, ensuring scalability, security, and reliability for your
distributed systems. The only configuration change required in Lithops is spec-
ifying the managed service’s endpoint, similar to previous local and remote
setups.

Note

When using self-managed Prometheus, scalability issues may arise if a large
number of functions run in parallel. Prometheus may struggle to handle the
volume of metrics generated by many concurrent functions, potentially leading
to performance bottlenecks. It is advisable to monitor Prometheus’s perfor-
mance, adjust resource allocations, or consider using a managed solution like
AWS Managed Prometheus for large-scale deployments.
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